...
首页> 外文期刊>Journal of Fluid Mechanics >LINEAR DYNAMICS OF WIND WAVES IN COUPLED TURBULENT AIR-WATER FLOW .2. NUMERICAL MODEL
【24h】

LINEAR DYNAMICS OF WIND WAVES IN COUPLED TURBULENT AIR-WATER FLOW .2. NUMERICAL MODEL

机译:湍流空气流动中风浪的线性动力学.2。数值模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We develop a numerical model of the interaction between wind and a small-amplitude water wave. The model first calculates the turbulent flows in both the air and water that would be obtained with a flat interface, and then calculates linear perturbations to this base flow caused by a travelling surface wave. Turbulent stresses in the base flow are parameterized using an eddy viscosity derived from a low-turbulent-Reynolds-number k-epsilon model. Turbulent stresses in the perturbed flow are parameterized using a new damped eddy viscosity model, in which the eddy viscosity model is used only in inner regions, and is damped exponentially to zero outside these inner regions. This approach is consistent with previously developed physical scaling arguments. Even on the ocean the interface can be aerodynamically smooth, transitional or rough, so the new model parameterizes the interface with a roughness Reynolds number and retains effects of molecular stresses (on both mean and turbulent parts of the flow). The damped eddy viscosity model has a free constant that is calibrated by comparing with results from a second-order closure model. The new model is then used to calculate the variation of form drag on a stationary rigid wave with Reynolds number, R. The form drag increases by a factor of almost two as R drops from 2 x 10(4) to 2 x 10(3) and shows remarkably good agreement with the value measured by Zilker & Hanratty (1979). These calculations show that the damped eddy viscosity model captures the physical processes that produce the asymmetric pressure that leads to form drag and also wave growth. Results from the numerical model show reasonable agreement with profiles measured over travelling water waves by Hsu & Hsu (1983), particularly for slower moving waves. The model suggests that the wave-induced flow in the water is irrotational except in an extremely thin interface layer, where viscous stresses are as likely to be important as turbulent stresses. Thus our study reinforces previous suggestions that the region very close to the interface is crucial to wind-wave interaction and shows that scales down to the viscous length may have an order-one effect on the development of the wave. The energy budget and growth rate of the wave motions, including effects of the sheared current and Reynolds number, will be examined in a subsequent paper. [References: 35]
机译:我们建立了风和小振幅水波之间相互作用的数值模型。该模型首先计算通过平面界面获得的空气和水中的湍流,然后计算由传播的表面波引起的对该基本流的线性扰动。使用从低湍流-雷诺数k-ε模型得出的涡流粘度对基流中的湍流应力进行参数化。使用新的阻尼涡流粘度模型对扰动流中的湍流应力进行参数化,其中涡流粘度模型仅在内部区域使用,并且在这些内部区域之外呈指数衰减至零。此方法与以前开发的物理缩放参数一致。即使在海洋上,界面在空气动力学上也可以是平滑的,过渡的或粗糙的,因此,新模型使用粗糙的雷诺数对界面进行参数化,并保留了分子应力的作用(在流体的平均和湍流部分)。阻尼涡流粘度模型具有一个自由常数,该常数可以通过与二阶封闭模型的结果进行比较来进行校准。然后将新模型用于计算具有雷诺数R的固定刚性波上的形式阻力变化。当R从2 x 10(4)下降到2 x 10(3)时,形式阻力增加几乎两倍。 ),并与Zilker和Hanratty(1979)测得的值非常吻合。这些计算表明,阻尼涡流粘度模型捕获了产生不对称压力的物理过程,这些不对称压力导致形成阻力以及波的增长。数值模型的结果显示出与Hsu&Hsu(1983)在行进的水波上测得的剖面有合理的一致性,特别是对于较慢的波。该模型表明,除了极薄的界面层(粘性应力与湍流应力一样重要)外,水中的波浪感应流是无旋转的。因此,我们的研究加强了先前的建议,即非常靠近界面的区域对于风-浪相互作用至关重要,并表明缩小至粘性长度的比例可能对波的发展具有一级影响。波动的能量收支和增长率,包括剪切电流和雷诺数的影响,将在随后的论文中进行研究。 [参考:35]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号