...
首页> 外文期刊>Journal of Engineering, Design and Technology >Grain refinement of C-Mn steel through thermo-mechanical processing
【24h】

Grain refinement of C-Mn steel through thermo-mechanical processing

机译:通过热机械加工对C-Mn钢进行晶粒细化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose - The application of new technologies requires, however, modern rolling mills. Indeed, in manufacturing plants of older types, strict compliance with the developed rolling regimes is not always feasible. Improving the mechanical properties in such cases is possible only by means of cooling. Compressive deformation behavior of carbon-manganese (C-Mn) grade has been investigated at temperatures ranging from 800-900℃ and strain rate from 0.01-50 s~(-1) on Gleeble-3800, a thermo-mechanical simulator. Simulation studies have been conducted mainly to observe the microstructural changes for various strain rate and deformation temperatures at a constant strain of 0.5 and a cooling rate of 20℃ s~(-1). Design/methodology/approach - The project begins with simulation of a hot rolling condition using the thermo-mechanical simulator; this was followed by microstructural examination and identification of phases present by using an optical microscope for hot-rolled coil and simulated samples; grain size measurement and size distribution studies; and optimization of finishing temperature, coiling temperature and cooling rate by mimicking plant processing parameters to improve the mechanical properties. Findings - As the strain rate and temperature increase, pearlite banding decreases gradually and finally gets completely eliminated, thereby improving the mechanical properties. True stress-strain curves were plotted to extrapolate the effect of strain-hardening and strain rate sensitivity on austenite (γ) and austenite-ferrite (γ-a) regions. To validate the effect of strain rate and temperature over the grain size, the hardness of simulated samples was measured using the universal hardness tester and the corresponding tensile strength was found from the standard hardness chart. Practical implications - The results of the study carried out have projected a new technology of thermo-mechanical simulation for the studied C-Mn grade. These results were used to optimize the plant processing parameter like finishing and coiling temperature and finishing stands strain rate. Originality/value - By controlling the hot rolling conditions like finishing, coiling temperature and cooling rate, structures differing in mechanical properties can be obtained for the same material. Accurate understanding of a structure being formed when different temperatures are applied enables the control of the process that assures intended structures and mechanical properties are achieved.
机译:目的-但是,新技术的应用需要现代化的轧机。实际上,在较旧类型的制造工厂中,严格遵守发达的轧制方案并不总是可行的。在这种情况下,只有通过冷却才能提高机械性能。在热力学模拟器Gleeble-3800上研究了碳锰(C-Mn)级合金的压缩变形行为,温度范围为800-900℃,应变速率为0.01-50 s〜(-1)。进行了模拟研究,主要观察了在0.5的恒定应变和20℃s〜(-1)的冷却速率下,各种应变速率和变形温度下的显微组织变化。设计/方法/方法-该项目首先使用热机械模拟器对热轧条件进行模拟。然后用光学显微镜对热轧卷和模拟样品进行显微组织检查和鉴定相。粒度测量和粒度分布研究;通过模仿工厂的加工参数来提高机械性能,从而优化精轧温度,卷取温度和冷却速率。发现-随着应变率和温度的升高,珠光体条带逐渐减少,最终被完全消除,从而改善了机械性能。绘制了真实的应力-应变曲线,以推断应变硬化和应变速率敏感性对奥氏体(γ)和奥氏体-铁素体(γ-a)区域的影响。为了验证应变率和温度对晶粒尺寸的影响,使用万能硬度计测量了模拟样品的硬度,并从标准硬度表中找到了相应的拉伸强度。实际意义-这项研究的结果为所研究的C-Mn等级预测了一种新的热机械模拟技术。这些结果被用于优化设备的加工参数,例如精轧和卷取温度以及精轧机架的应变率。独创性/价值-通过控制热轧条件(如精加工,卷取温度和冷却速率),可以对同一材料获得机械性能不同的组织。当施加不同的温度时,对形成的结构的准确理解可以控制过程,从而确保实现预期的结构和机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号