首页> 外文期刊>Journal of Engineering Mechanics >Generalized Variational Principles for Uncertainty Quantification of Boundary Value Problems of Random Heterogeneous Materials
【24h】

Generalized Variational Principles for Uncertainty Quantification of Boundary Value Problems of Random Heterogeneous Materials

机译:随机非均质材料边值问题的不确定性量化的广义变分原理

获取原文
获取原文并翻译 | 示例
           

摘要

Asymptotic theories of classical micromechanics are built on a fundamental assumption of large separation of scales. Forrandom heterogeneous materials the scale-decoupling assumption however is inapplicable in many circumstances from conventionalfailure problems to novel small-scale engineering systems. Development of new theories for scale-coupling mechanics and uncertaintyquantification is considered to have significant impacts on diverse disciplines. Scale-coupling effects become crucial when size ofboundary value problems (BVP_S) dynamic wavelength is comparable to the characteristic length of heterogeneity or when local hetero-geneity becomes crucial due to extreme sensitivity of local instabilities. Stochasticity, vanishing in deterministic homogenization, resur-faces amid multiscale interactions. Multiscale stochastic modeling is expected to play an increasingly important role in simulation andprediction of material failure and novel multiscale systems such as microelectronic-mechanical systems and metamaterials. In computa-tional mechanics a prevalent issue is, while a fine mesh is desired to achieve high accuracy, a certain mesh size threshold exists belowwhich deterministic finite elements become questionable. This work starts investigation of the scale-coupling problems by first looking atuncertainty of material responses due to randomness or incomplete information of microstructures. The classical variational principles aregeneralized from scale-decoupling problems to scale-coupling BVP_S, which provides upper and lower variational bounds for probabilisticprediction of material responses. It is expected that the developed generalized variational principles will lead to novel computationalmethods for uncertainty quantification of random heterogeneous materials.
机译:经典微力学的渐近理论建立在大尺度分离的基本假设之上。随机异质材料的尺度解耦假设在许多情况下都不适用,从传统的故障问题到新型的小型工程系统。尺度耦合力学和不确定性量化的新理论的发展被认为对不同学科具有重大影响。当边界值问题(BVP_S)动态波长的大小与异质性的特征长度相当时,或者当由于局部不稳定性的极端敏感性而导致局部异质性变得至关重要时,尺度耦合效应就变得至关重要。在确定性同质性中消失的随机性在多尺度交互作用中重新出现。预计多尺度随机建模将在材料破坏和新型多尺度系统(如微电子机械系统和超材料)的仿真和预测中发挥越来越重要的作用。在计算力学中,一个普遍的问题是,虽然需要一个精细的网格来实现高精度,但存在一定的网格尺寸阈值,在该阈值以下,确定性有限元变得值得怀疑。这项工作首先要研究由于微观结构的随机性或不完整信息而引起的材料响应的不确定性,从而开始研究尺度耦合问题。从尺度解耦问题到尺度耦合BVP_S概括了经典的变分原理,它为材料响应的概率预测提供了上下变分界线。可以预期,已发展的广义变分原理将为随机异质材料的不确定性量化带来新的计算方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号