...
首页> 外文期刊>Journal of Electronic Materials >Perturbation Methods for Real-Time In Situ Evaluation of Hot-Side Thermal Resistances in Thermoelectric Energy Recovery Systems
【24h】

Perturbation Methods for Real-Time In Situ Evaluation of Hot-Side Thermal Resistances in Thermoelectric Energy Recovery Systems

机译:热电能量回收系统中热侧热电阻实时原位评估的摄动方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Thermoelectric (TE) power systems in high-temperature industrial, transportation, and military energy systems require high-performance hot-side and cold-side heat transfer to provide the critical temperature differential and transfer the required thermal energy to create the power output. Hot- and cold-side heat transfer performance is typically characterized by the hot-side and cold-side thermal resistance, R (h,th) and R (c,th), respectively. This heat transfer performance determines the hot-side temperature, T (h), and cold-side temperature, T (c), conditions when operating in energy recovery environments with available temperature differentials characterized by an external driving temperature, T (src), and ambient temperature, T (amb). It is crucial to monitor and track the hot-side thermal performance at all times during TE energy recovery system operation, thereby allowing one to track the system "health," predict future expected system performance, and anticipate/prevent system failures. This paper describes the use of a perturbation methodology and a direct coupling between the TE current, voltage, and hot-side energy flow to extract a real-time in situ evaluation of hot-side thermal resistances. External measurable TE parameters, either system current or T (src), can be perturbed during system operation, and the resulting TE system response can then be coupled mathematically to the hot-side thermal transfer performance (i.e., thermal resistance). This paper discusses the mathematical formalism of this technique, and TE module experimental data showing successful application of real-time current perturbation. This technique provides a pathway for developing faster, real-time system monitoring and diagnostics to alleviate system performance degradation, or prevent system damage from dramatic changes in hot-side thermal transfer conditions in industrial, transportation, and spacecraft TE power systems.
机译:高温工业,运输和军事能源系统中的热电(TE)电力系统需要高性能的热侧和冷侧热传递,以提供临界温差并传递所需的热能以产生功率输出。热侧和冷侧传热性能通常分别由热侧和冷侧热阻R(h,th)和R(c,th)表征。这种传热性能决定了在能量回收环境中运行时,热侧温度T(h)和冷侧温度T(c)的条件,该温度具有以外部驱动温度T(src)为特征的可用温差,和环境温度T(amb)。在TE能量回收系统运行期间,始终监控和跟踪热侧热性能至关重要,从而使人们能够跟踪系统的“运行状况”,预测未来的预期系统性能以及预测/预防系统故障。本文介绍了一种摄动方法的使用以及TE电流,电压和热侧能量流之间的直接耦合,以提取热侧热阻的实时原位评估。外部可测量的TE参数(系统电流或T(src))可以在系统运行期间受到干扰,然后将所得的TE系统响应数学上耦合到热侧传热性能(即热阻)。本文讨论了该技术的数学形式,TE模块实验数据显示了实时电流微扰的成功应用。该技术为开发更快的实时系统监控和诊断提供了一条途径,以减轻系统性能下降,或防止由于工业,运输和航天器TE电力系统中热侧传热条件的急剧变化而导致系统损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号