【24h】

Oxygen evolution activity and stability of iridium in acidic media. Part 2. - Electrochemically grown hydrous iridium oxide

机译:铱在酸性介质中的析氧活性和稳定性。第2部分-电化学生长的含水氧化铱

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrous iridium oxide is a well-known material for its electrochromism and electrocatalytic activity, e.g. in oxygen and chlorine evolution reactions ( OER) and (CER). Poor durability during the OER is, however, usually considered as a major drawback. In the current work dissolution of hydrous oxide, prepared from metallic iridium by applying a potential cycle protocol of different number of cydes, has been investigated using a scanning flow cell (SFC) inductively coupled plasma mass spectrometer (ICP-MS) based setup. It is shown that in the potential region preceding the OER, dissolution behavior of such electrodes. is very similar to that of metallic iridium discussed in Part I. It is suggested that at anodic potentials the process is controlled by oxidation of metallic iridium underneath a hydrous oxide, with formation of a thin compact anhydrous oxide layer sandwiched between metal and hydrous oxide. The application of a reductive potential results in the reduction of the compact oxide layer and also leads to dissolution. At these potentials some dissolution of hydrous oxide itself is postulated. Decomposition of iridium (V) oxyhydroxide with formation of molecular oxygen and Ir(III) complexes is suggested at higher anodic potentials during OER. We hypothesize that formation of the soluble Ir(III) complex or complexes and their dissolution is responsible for the observed variation of dissolution with potential in the whole studied potential window. Based on the experimental results and an extended literature overview, a new mechanism of OER triggered dissolution is proposed. The difference in activity and stability of electrochemically prepared hydrous oxides and, usually more stable, "dry" oxides is suggested to be a consequence of different OER mechanisms on these materials. (C) 2016 Elsevier B.V. All rights reserved.
机译:含水氧化铱因其电致变色和电催化活性而为人所熟知,例如H 2 O 3。在氧气和氯放出反应(OER)和(CER)中。然而,通常认为OER期间的耐用性差是一个主要缺点。在当前的工作中,已经使用基于扫描流动池(SFC)电感耦合等离子体质谱仪(ICP-MS)的方法研究了通过应用不同数量的环的潜在循环规程从金属铱制备的水合氧化物的溶解情况。结果表明,在OER之前的电位区域中,这种电极的溶解行为。与第一部分中讨论的金属铱非常相似。建议在阳极电势下,该过程通过在水合氧化物下面对金属铱进行氧化来控制,并形成夹在金属和水合氧化物之间的薄而紧凑的无水氧化物层。还原电位的施加导致致密氧化物层的减少并且还导致溶解。在这些电势下,假定水合氧化物本身会溶解。建议在OER过程中在较高的阳极电位下分解氢氧化铱(V)并形成分子氧和Ir(III)配合物。我们假设可溶性Ir(III)配合物的形成和它们的溶解是在整个研究的电位窗口中观察到的溶解随电位变化的原因。基于实验结果和广泛的文献综述,提出了OER触发溶出的新机制。电化学制备的含水氧化物和通常更稳定的“干”氧化物的活性和稳定性的差异被认为是这些材料上不同OER机理的结果。 (C)2016 Elsevier B.V.保留所有权利。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号