首页> 外文期刊>Journal of Coastal Research: An International Forum for the Littoral Sciences >Utilizing Spectral Analysis of Coastal Discharge Computed by a Numerical Model to Determine Boundary Influence
【24h】

Utilizing Spectral Analysis of Coastal Discharge Computed by a Numerical Model to Determine Boundary Influence

机译:利用数值模型计算的海岸放电谱分析确定边界影响

获取原文
获取原文并翻译 | 示例
       

摘要

In the present study, a spectral analysis was applied to field data and a numerical model of southeastern Everglades and northeastern Florida Bay that involved computing and comparing the power spectrum of simulated and measured flows at the primary coastal outflow creek. Four dominant power frequencies, corresponding to the S1, S2, M2, and O1 tidal periods, were apparent in the measured outflows. The model seemed to reproduce the magnitudes of the S1 and S2 components better than those of the M2 and O1 components. To determine the cause of the relatively poor representation of the M2 and O1 components, we created a steady-base version of the model by setting the time-varying forcing functions-rainfall, evapotranspiration, wind, and inland and tidal boundary conditions-to averaged values. The steady-base model was then modified to produce multiple simulations with only one time-varying forcing function for each model run. These experimental simulations approximated the individual effects of each forcing function on the system. The spectral analysis of the experimental simulations indicated that temporal fluctuations in rainfall, evapotranspiration, and inland water level and discharge boundaries have negligible effects on coastal creek flow fluctuations with periods of less than 48 hours. The tidal boundary seems to be the only forcing function inducing the M2 and O1 frequency flow fluctuations in the creek. An analytical formulation was developed, relating the errors induced by the tidal water-level gauge resolution to the errors in the simulated discharge fluctuations at the coastal creek. This formulation yielded a discharge-fluctuation error similar in magnitude to the errors observed when comparing the spectrum of the simulated and measured discharge. The dominant source of error in the simulation of discharge fluctuation magnitude is most likely the resolution of the water-level gauges used to create the model boundary.
机译:在本研究中,将频谱分析应用于现场数据和东南大沼泽地和东北佛罗里达湾的数值模型,其中涉及计算和比较主要沿海流出小溪的模拟流量和实测流量的功率谱。在测得的流出量中,明显出现了四个主要功率频率,分别对应于S1,S2,M2和O1潮汐时段。该模型似乎比M2和O1分量更好地再现了S1和S2分量的大小。为了确定M2和O1组分表示相对差的原因,我们通过设置随时间变化的强迫函数(降雨,蒸散,风,内陆和潮汐边界条件)来创建模型的稳定基准版本,以求平均值价值观。然后对稳定基础模型进行修改,以针对每个模型运行仅使用一个随时间变化的强迫函数来产生多个模拟。这些实验模拟近似了每个强制功能对系统的单独影响。实验模拟的频谱分析表明,降雨,蒸散量,内陆水位和排放边界的时间波动对海岸小河流量波动的影响可以忽略不计,周期少于48小时。潮汐边界似乎是引起小溪中M2和O1频率流量波动的唯一强迫函数。开发了一种分析公式,将潮汐水位计分辨率引起的误差与沿岸小溪的模拟排放波动中的误差相关。该公式产生的放电波动误差的大小与比较模拟放电和测量放电的频谱时观察到的误差相似。排放波动幅度模拟中的主要误差源很可能是用于创建模型边界的水位计的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号