...
首页> 外文期刊>Journal of Computational and Applied Mathematics >Devising efficient numerical methods for oscillating patterns in reaction-diffusion systems
【24h】

Devising efficient numerical methods for oscillating patterns in reaction-diffusion systems

机译:设计反应扩散系统中振荡模式的有效数值方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we consider the numerical approximation of a reaction-diffusion system 2D in space whose solutions are patterns oscillating in time or both in time and space. We present a stability analysis for a linear test heat equation in terms of the diffusion d and of the reaction timescales given by the real and imaginary parts alpha and beta of the eigenvalues of J(P-e), the Jacobian of the reaction part at the equilibrium point P-e. Focusing on the case alpha = 0, beta not equal 0, we obtain stability regions in the plane (xi, nu), where xi = lambda(h; d)h(t), nu = beta h(t), h(t) time stepsize, lambda lumped diffusion scale depending also from the space stepsize h and from the spectral properties of the discrete Laplace operator arising from the semi-discretization in space. In space we apply the Extended Central Difference Formulas (ECDFs) of order p = 2, 4, 6. In time we approximate the diffusion part in implicit way and the reaction part by a selection of integrators: the Explicit Euler and ADI methods, the symplectic Euler and a partitioned Runge-Kutta method that are symplectic in the absence of diffusion. Hence, by estimating lambda, for each method we derive stepsize restrictions h(t) less than or similar to F-met (h; d, beta, p) in terms of the stability curve F-met depending on diffusion and reaction timescales and from the approximation order in space. For the same schemes, we provide also a dispersion error analysis. We present numerical simulations for the test heat equation and for the Lotka-Volterra PDE system with solutions oscillating only in time for the presence of a centre-type dynamics. In these cases, the implicit-symplectic schemes provide the best choice. We solve also the Schnakenberg model with spatial patterns oscillating in space and time in the presence of an attractive limit cycle due to the Turing-Hopf instability. In this case, all schemes attain closed orbits in the phase space, but the Explicit ADI method is the best choice from the computational point of view. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了空间中反应扩散系统2D的数值逼近,其解是模式随时间或随时间和空间而振动。我们根据扩散d和由J(Pe)特征值的实部和虚部alpha和beta给出的反应时间尺度,给出了线性测试热方程的稳定性分析,该反应的雅可比定律在平衡时点Pe。着眼于alpha = 0,beta不等于0的情况,我们获得了平面(xi,nu)中的稳定区域,其中xi = lambda(h; d)h(t),nu = beta h(t),h( t)时间步长,λ集总扩散尺度也取决于空间步长h和空间半离散化所产生的离散拉普拉斯算子的光谱特性。在空间中,我们应用阶跃= 2、4、6的扩展中心差分公式(ECDF)。在时间上,我们通过选择积分器:隐式Euler和ADI方法,辛欧拉和分区Runge-Kutta方法在不存在扩散的情况下是辛的。因此,通过估计lambda,对于每种方法,我们根据扩散和反应时间尺度,根据稳定性曲线F-met得出小于或类似于F-met(h; d,beta,p)的阶梯大小限制h(t)。从空间的近似阶对于相同的方案,我们还提供了色散误差分析。我们为测试热方程和Lotka-Volterra PDE系统提供了数值模拟,其解决方案仅在存在中心型动力学的情况下及时振荡。在这些情况下,隐式渐进方案提供了最佳选择。由于Turing-Hopf不稳定性,在存在有吸引力的极限环的情况下,我们还求解了具有时空振荡的空间模式的Schnakenberg模型。在这种情况下,所有方案都在相空间中达到闭合轨道,但是从计算的角度来看,显式ADI方法是最佳选择。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号