首页> 外文期刊>Journal of Computational and Applied Mathematics >Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations
【24h】

Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations

机译:一维完全非线性二阶偏微分方程的收敛有限差分方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper develops a new framework for designing and analyzing convergent finite difference methods for approximating both classical and viscosity solutions of second order fully nonlinear partial differential equations (PDEs) in 1-D. The goal of the paper is to extend the successful framework of monotone, consistent, and stable finite difference methods for first order fully nonlinear Hamilton-Jacobi equations to second order fully nonlinear PDEs such as Monge-Ampère and Bellman type equations. New concepts of consistency, generalized monotonicity, and stability are introduced; among them, the generalized monotonicity and consistency, which are easier to verify in practice, are natural extensions of the corresponding notions of finite difference methods for first order fully nonlinear Hamilton-Jacobi equations. The main component of the proposed framework is the concept of a "numerical operator", and the main idea used to design consistent, generalized monotone and stable finite difference methods is the concept of a "numerical moment". These two new concepts play the same roles the "numerical Hamiltonian" and the "numerical viscosity" play in the finite difference framework for first order fully nonlinear Hamilton-Jacobi equations. In the paper, two classes of consistent and monotone finite difference methods are proposed for second order fully nonlinear PDEs. The first class contains Lax-Friedrichs-like methods which also are proved to be stable, and the second class contains Godunov-like methods. Numerical results are also presented to gauge the performance of the proposed finite difference methods and to validate the theoretical results of the paper.
机译:本文为设计和分析收敛有限差分方法提供了一个新的框架,该方法可以逼近一维二阶完全非线性偏微分方程(PDE)的经典解和粘性解。本文的目的是将一阶完全非线性Hamilton-Jacobi方程的单调,一致和稳定有限差分方法的成功框架扩展到Monge-Ampère和Bellman型方程等第二阶完全非线性PDE。引入了一致性,广义单调性和稳定性的新概念;其中,在实践中更易于验证的广义单调性和一致性是一阶完全非线性Hamilton-Jacobi方程的有限差分方法的相应概念的自然扩展。拟议框架的主要组成部分是“数值算子”的概念,而用于设计一致,广义单调和稳定有限差分法的主要思想是“数值矩”的概念。这两个新概念在一阶完全非线性Hamilton-Jacobi方程的有限差分框架中起着“数值哈密顿量”和“数值黏度”相同的作用。本文针对二阶完全非线性PDE提出了两类一致和单调有限差分方法。第一类包含类似Lax-Friedrichs的方法,这些方法也被证明是稳定的,第二类包含类似于Godunov的方法。还提供了数值结果,以评估所提出的有限差分方法的性能并验证本文的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号