...
首页> 外文期刊>Journal of Computational Physics >A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry
【24h】

A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry

机译:一种计算效率高,半隐式迭代方法,用于对具有刚性化学反应的流进行时间积分

获取原文
获取原文并翻译 | 示例
           

摘要

A semi-implicit preconditioned iterative method is proposed for the time-integration of the stiff chemistry in simulations of unsteady reacting flows, such as turbulent flames, using detailed chemical kinetic mechanisms. Emphasis is placed on the simultaneous treatment of convection, diffusion, and chemistry, without using operator splitting techniques. The preconditioner corresponds to an approximation of the diagonal of the chemical Jacobian. Upon convergence of the sub-iterations, the fully-implicit, second-order time-accurate, Crank-Nicolson formulation is recovered. Performance of the proposed method is tested theoretically and numerically on one-dimensional laminar and three-dimensional high Karlovitz turbulent premixed n-heptane/air flames. The species lifetimes contained in the diagonal preconditioner are found to capture all critical small chemical timescales, such that the largest stable time step size for the simulation of the turbulent flame with the proposed method is limited by the convective CFL, rather than chemistry. The theoretical and numerical stability limits are in good agreement and are independent of the number of sub-iterations. The results indicate that the overall procedure is second-order accurate in time, free of lagging errors, and the cost per iteration is similar to that of an explicit time integration. The theoretical analysis is extended to a wide range of flames (premixed and non-premixed), unburnt conditions, fuels, and chemical mechanisms. In all cases, the proposed method is found (theoretically) to be stable and to provide good convergence rate for the sub-iterations up to a time step size larger than 1 mu s. This makes the proposed method ideal for the simulation of turbulent flames. (C) 2015 Elsevier Inc. All rights reserved.
机译:提出了一种半隐式预处理迭代方法,用于使用详细的化学动力学机理模拟不稳定化学反应流(例如湍流火焰)中的刚性化学物质的时间积分。重点放在对流,扩散和化学的同时处理上,而不使用运算符拆分技术。预处理器对应于化学雅可比行列的对角线的近似值。子迭代收敛后,将恢复完全隐式的,二阶时间精确的Crank-Nicolson公式。在一维层流和三维高卡罗维兹湍流预混正庚烷/空气火焰上,从理论和数值上对所提方法的性能进行了测试。发现对角预处理器中包含的物质寿命可以捕获所有关键的小化学时间尺度,因此,用所提出的方法模拟湍流火焰的最大稳定时间步长受到对流CFL的限制,而不是化学作用的限制。理论上和数值上的稳定性极限是一致的,并且与子迭代次数无关。结果表明,整个过程的时间精度是二阶的,没有滞后误差,并且每次迭代的成本与显式时间积分的成本相似。理论分析扩展到广泛的火焰(预混合和非预混合),未燃烧条件,燃料和化学机理。在所有情况下,理论上都发现所提出的方法是稳定的,并且可以为子迭代提供良好的收敛速度,直到时间步长大于1μs。这使所提出的方法非常适合于模拟湍流火焰。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号