首页> 外文期刊>Journal of Computational Physics >Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computational methodology
【24h】

Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computational methodology

机译:用于精确有效地计算大规模线性系统中一阶和二阶灵敏度的二阶伴随灵敏度分析方法(2nd-ASAM):I.计算方法

获取原文
获取原文并翻译 | 示例
       

摘要

This work presents the second-order forward and adjoint sensitivity analysis methodologies( 2nd-FSAMand 2nd-ASAM) for computing exactly and efficiently the second-order functional derivatives of physical (engineering, biological, etc.) system responses (i.e., "system performance parameters") to the system's model parameters. The definition of "system parameters" used in this work includes all computational input data, correlations, initial and/or boundary conditions, etc. For a physical system comprising N-alpha parameters and N-r responses, we note that the 2nd-FSAM requires a total of (N-alpha(2)/2 + 3N(alpha)/2) large-scale computations for obtaining all of the first- and second-order sensitivities, for all N-r system responses. On the other hand, for one functional-type system response, the 2nd-ASAM requires one large-scale computation using the first-level adjoint sensitivity system for obtaining all of the first-order sensitivities, followed by at most N-alpha large-scale computations using the second-level adjoint sensitivity systems for obtaining exactly all of the second-order sensitivities. Therefore, the 2nd-FSAM should be used when N-r N-alpha, while the 2nd-ASAM should be used when N-alpha N-r. The original 2nd-ASAM presented in this work should enable the hitherto very difficult, if not intractable, exact computation of all of the second-order response sensitivities (i.e., functional Gateaux-derivatives) for large-systems involving many parameters, as usually encountered in practice. Very importantly, the implementation of the 2nd-ASAM requires very little additional effort beyond the construction of the adjoint sensitivity system needed for computing the first-order sensitivities. (C) 2014 Elsevier Inc. All rights reserved.
机译:这项工作提出了用于精确和有效地计算物理(工程,生物等)系统响应(即“系统性能”)的二阶功能导数的二阶前向和伴随灵敏度分析方法(2nd-FSAM和2nd-ASAM)。参数”)到系统的模型参数。本工作中使用的“系统参数”的定义包括所有计算输入数据,相关性,初始和/或边界条件等。对于包含N-alpha参数和Nr响应的物理系统,我们注意到第二FSAM需要一个总计(N-alpha(2)/ 2 +3Nα/ 2)大规模计算,用于获得所有Nr系统响应的所有一阶和二阶灵敏度。另一方面,对于一个功能类型的系统响应,2nd-ASAM需要使用一级伴随灵敏度系统进行一次大规模计算,以获取所有一阶灵敏度,然后最多进行N-alpha个大型响应。使用第二级伴随灵敏度系统进行标度计算,以获取确切的所有二阶灵敏度。因此,当N-r N-alpha时应使用2nd-FSAM,而当N-alpha N-r时应使用2nd-ASAM。这项工作中提出的原始2nd-ASAM应该能够使迄今为止涉及很多参数的大型系统的所有二阶响应灵敏度(即功能性Gateaux导数)的迄今为止非常困难的(即使不是难以解决的)精确计算。在实践中。非常重要的是,第二代ASAM的实现只需要很少的额外工作,而无需构建用于计算一阶灵敏度的伴随灵敏度系统。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号