首页> 外文期刊>Journal of Computational Physics >Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs
【24h】

Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

机译:通过贝叶斯模型不确定性方法选择多项式混沌库,并将其应用于具有随机输入的PDE的稀疏近似

获取原文
获取原文并翻译 | 示例
       

摘要

Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-?tting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coeffcients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes- optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.
机译:广义多项式混沌(gPC)扩展使我们能够使用一系列多项式混沌基础函数来表示随机系统的解。随着随机输入变量的维数增加,gPC项的数量急剧增加。当gPC项的数量大于可用样本的数量时,当相应的确定性求解器的计算成本很高时,常常会发生这种情况,由于过度拟合,对gPC展开的评估可能不准确。我们提出了一种完全贝叶斯方法,通过结合贝叶斯模型不确定性和正则化回归方法,可以在空间域和随机域中对随机解进行全局恢复。它允许通过(1)贝叶斯模型平均值(BMA)或(2)中位数概率模型评估空间点网格上的PC系数,并通过样条插值将其构造为空间域上的空间函数。前者解释了模型的不确定性,并提供了贝叶斯最优预测。而后者通过评估主要gPC基数的子集上的扩展来提供随机解的稀疏表示。此外,所提出的方法通过包含概率量化了概率意义上的gPC基的重要性。我们设计了一个马尔可夫链蒙特卡洛(MCMC)采样器,无需特设技术即可评估所有未知量。所提出的方法适用于但不限于其随机解相对于gPC基在随机空间中稀疏而所涉及的确定性求解器昂贵的问题。我们证明了所提出方法的准确性和性能,并与其他方法进行了比较,以求解具有1、14和40随机尺寸的椭圆形SPDE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号