首页> 外文期刊>Journal of Computational Physics >A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
【24h】

A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

机译:相对论Vlasov-Maxwell系统的基于小波MRA的自适应半拉格朗日方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma stabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques. (C) 2008 Elsevier Inc. All rights reserved.
机译:在本文中,我们提出了一种使用自适应半拉格朗日方法在相空间网格上相对论性Vlasov-Maxwell系统数值解的新方法。自适应性是通过小波多分辨率分析来执行的,该分析基于逼近误差的局部测量值和分布函数的规律性给出了强大而自然的细化准则。因此,分布函数的多尺度扩展允许获得数据的稀疏表示,从而节省了内存空间和CPU时间。我们将此数值方案应用于在激光等离子体物理学中产生的简化的Vlasov-Maxwell系统。研究了相对论强激光脉冲与过密等离子体刺的相互作用。这些Vlasov模拟揭示了与电磁波引起的快速粒子动力学相关的多种现象,如电子俘获,粒子加速和电子等离子体破波。但是,由于该方法引入的大量开销,因此与均匀网格上的Vlasov求解器相比,我们在此处开发的基于小波的自适应方法没有产生明显的改进。尽管如此,它们可能是朝着基于网格细化的不同思想或更有效实施而朝着更高效的自适应求解器迈出的第一步。这里的Vlasov模拟是在二维相空间中进行的,其中细丝的发展由于相对论效应而被强烈放大,这要求相空间网格的总点数有重要的增加,因为随着时间的流逝它们变得越来越细。在这些需要解析的细丝仅占超体积的一小部分的情况下,自适应方法可能会更有用,由于表面到体积的缩放以及基本上一维的结构,这种高尺寸的超细纤维会以较高的尺寸出现的细丝。此外,提高自适应方法效率的主要方法是在数值方案的相空间中增加局部特征,方法是考虑使用具有更紧凑支持的多尺度重建,并用更多局部空间代替半拉格朗日方法-非常适合并行域分解技术的数值方案,如紧凑有限差分方案,不连续Galerkin方法或有限元残差方案。 (C)2008 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号