首页> 外文期刊>Journal of Computational Physics >A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids
【24h】

A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

机译:用于模拟二维非结构化网格上弹塑性流动的名义二阶以细胞为中心的拉格朗日方案

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
机译:在本文中,我们描述了一种以单元为中心的拉格朗日方案,该方案专门用于平面几何中二维非结构化网格上的固体动力学数值模拟。这种数值方法利用了Wilkins [M.L. Wilkins,弹塑性流动计算,方法。计算物理(1964)]。在该模型中,柯西应力张量被分解为其偏斜部分与热力学压力之和,热力学压力由状态方程定义。关于偏应力,其时间演化受各向同性材料的经典本构律支配。可塑性模型采用冯·米塞斯屈服准则,并通过径向返回算法实现。数值方案依赖于有限体积以单元为中心的方法,其中数字通量以子单元力表示。通过要求该方案满足半离散耗散不等式,可以获得子电池力的一般形式。借助以节点为中心的求解器,与单元体积变化一致地计算了移动网格的子单元力和节点速度,这是总能量守恒的结果。通过在Ben-Artzi和Falcovitz提出的广义Riemann问题方法的拉格朗日框架中开发二维扩展,可以实现名义上的二阶扩展。 Ben-Artzi,J。Falcovitz,《计算流体动力学中的广义黎曼问题》,剑桥Monogr。应用计算数学。 (2003)]。最后,通过计算几个测试案例来评估数值方案的鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号