...
首页> 外文期刊>Journal of Computational Physics >An interface capturing method for the simulation of multi-phase compressible flows
【24h】

An interface capturing method for the simulation of multi-phase compressible flows

机译:一种模拟多相可压缩流的界面捕获方法

获取原文
获取原文并翻译 | 示例

摘要

A novel finite-volume interface (contact) capturing method is presented for simulation of multi-component compressible flows with high density ratios and strong shocks. In addition, the materials on the two sides of interfaces can have significantly different equations of state. Material boundaries are identified through an interface function, which is solved in concert with the governing equations on the same mesh. For long simulations, the method relies on an interface compression technique that constrains the thickness of the diffused interface to a few grid cells throughout the simulation. This is done in the spirit of shock-capturing schemes, for which numerical dissipation effectively preserves a sharp but mesh-representable shock profile. For contact capturing, the formulation is modified so that interface representations remain sharp like captured shocks, countering their tendency to diffuse via the same numerical diffusion needed for shock-capturing. Special techniques for accurate and robust computation of interface normals and derivatives of the interface function are developed. The interface compression method is coupled to a shock-capturing compressible flow solver in a way that avoids the spurious oscillations that typically develop at material boundaries. Convergence to weak solutions of the governing equations is proved for the new contact capturing approach. Comparisons with exact Riemann problems for model one-dimensional multi-material flows show that the interface compression technique is accurate. The method employs Cartesian product stencils and, therefore, there is no inherent obstacles in multiple dimensions. Examples of two- and three-dimensional flows are also presented, including a demonstration with significantly disparate equations of state: a shock induced collapse of three-dimensional van der Waal's bubbles (air) in a stiffened equation of state liquid (water) adjacent to a Mie-Grüneisen equation of state wall (copper).
机译:提出了一种新颖的有限体积界面(接触)捕获方法,用于模拟具有高密度比和强烈冲击的多组分可压缩流。另外,界面两侧的材料可以具有明显不同的状态方程。通过界面函数识别材料边界,该界面函数与同一网格上的控制方程式一起求解。对于长时间的仿真,该方法依赖于界面压缩技术,该技术在整个仿真过程中将扩散界面的厚度限制在几个网格单元上。这是本着防震方案的精神完成的,对于这些方案,数值耗散有效地保留了锐利但网格可表示的冲击轮廓。对于接触捕捉,对配方进行了修改,以使界面表示像捕捉到的震动一样保持清晰,以抵消它们通过捕捉震动所需的相同数值扩散而扩散的趋势。开发了用于对接口法线和接口函数的导数进行准确而强大的计算的特殊技术。界面压缩方法以可避免通常在材料边界处产生的杂散振荡的方式耦合到可捕捉震荡的可压缩流动求解器。对于新的接触捕捉方法,证明了对控制方程的弱解的收敛性。与一维多材料模型流的精确Riemann问题的比较表明,界面压缩技术是准确的。该方法使用笛卡尔积模板,因此,在多个维度上没有固有的障碍。还提供了二维和三维流动的示例,包括带有明显不同的状态方程的演示:激振引起的三维范德华气泡(空气)在与之相邻的状态液体(水)的刚性方程中坍塌。状态墙(铜)的Mie-Grüneisen方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号