首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Sparsity-Weighted Outlier FLOODing (OFLOOD) Method: Efficient Rare Event Sampling Method Using Sparsity of Distribution
【24h】

Sparsity-Weighted Outlier FLOODing (OFLOOD) Method: Efficient Rare Event Sampling Method Using Sparsity of Distribution

机译:稀疏加权离群泛洪(OFLOOD)方法:使用稀疏分布的有效稀有事件采样方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby theoutlier clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules. (c) 2015 Wiley Periodicals, Inc.
机译:作为离群泛滥(OFLOOD)方法的扩展[Harada等人,J。Comput。化学2015,36,763],由分层聚类算法FlexDice定义的异常值的稀疏性被视为以稀疏加权的“ OFLOOD”实现了有效的构象搜索。在OFLOOD中,FlexDice将稀疏分布区域检测为异常值。异常值被认为具有促进构象转变的潜力,并通过重新启动分子动力学模拟被用作构象重采样的初始结构。在检测离群值时,FlexDice为每个离群值在层次结构中定义一个等级,该等级与分布中的稀疏性有关。在这项研究中,我们分别定义了较低的排名(第一名),中等的排名(第二名)和最高的排名(第三名)。例如,排名第一的离群值位于远离聚类的给定构象空间中(高度稀疏分布),而排名第三的离群值位于离群的附近(中等稀疏分布)。为了有效地实现构象搜索,从具有给定等级的离群值进行重采样。作为演示,此方法应用于几种模型系统:丙氨酸二肽,蛋氨酸脑啡肽,色氨酸笼,T4溶菌酶和谷氨酰胺结合蛋白。在每个演示中,本方法成功地复制了亚稳态之间的过渡。特别地,排名第一的OFLOOD通过扩展边缘极大地加快了构象空间的探索。相比之下,排名第三的OFLOOD强烈地复制了相邻亚稳态之间的局部转换。为了对采样快照进行定量评估,结合了伞形采样进行了自由能计算,从而提供了生物分子的严格景观。 (c)2015年威利期刊有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号