...
首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >A COMPARISON BETWEEN TWO MASSIVELY PARALLEL ALGORITHMS FOR MONTE CARLO COMPUTER SIMULATION - AN INVESTIGATION IN THE GRAND CANONICAL ENSEMBLE
【24h】

A COMPARISON BETWEEN TWO MASSIVELY PARALLEL ALGORITHMS FOR MONTE CARLO COMPUTER SIMULATION - AN INVESTIGATION IN THE GRAND CANONICAL ENSEMBLE

机译:蒙特卡罗计算机仿真的两种大规模并行算法之间的比较-对大正则模型的研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a comparison between two different approaches to parallelizing the grand canonical Monte Carlo simulation technique (GCMC) for classical fluids: a spatial decomposition and a time decomposition. The spatial decomposition relies on the fact that for short-ranged fluids, such as the cut and shifted Lennard-Jones potential used in this work, atoms separated by a greater distance than the reach of the potential act independently, and thus different processors can work concurrently in regions of the same system which are sufficiently far apart. The time decomposition is an exactly parallel approach which employs simultaneous (GCMC) simulations, one per processor, identical in every respect except the initial random number seed, with the thermodynamic output variables averaged across all processors. While scaling characteristics for the spatial decomposition are presented for 8-1024 processor systems, the comparison between the two decompositions is limited to the 8-128 processor range due to the warm-up time and memory imitations of the time decomposition. Using a combination of speed and statistical efficiency, the two algorithms are compared at two different state points. While the time decomposition reaches a given value of standard error in the system's potential energy more quickly than the spatial decomposition for both densities, the warm-up time demands of the time decomposition quickly become insurmountable as the system size increases. (C) 1996 by John Wiley & Sons, Inc. [References: 19]
机译:我们比较了两种用于并行处理经典流体的经典经典蒙特卡洛模拟技术(GCMC)的方法之间的比较:空间分解和时间分解。空间分解依赖于以下事实:对于短距离流体(例如在这项工作中使用的切变和移动的Lennard-Jones势),相距比势的作用范围更大的距离的原子独立起作用,因此,不同的处理器可以工作同时在同一系统的足够远的区域中。时间分解是一种完全并行的方法,它采用同时(GCMC)模拟,每个处理器一个,除了初始随机数种子外,每个方面都相同,而热力学输出变量在所有处理器中平均。虽然针对8-1024处理器系统提供了空间分解的缩放特性,但由于预热时间和时间分解的模仿,两次分解之间的比较仅限于8-128处理器范围。结合速度和统计效率,可以在两个不同的状态点比较这两种算法。尽管时间分解在两种密度下都比空间分解更快地达到了系统势能中给定标准误差的值,但是随着系统尺寸的增加,时间分解的预热时间需求很快变得不可克服。 (C)1996,John Wiley&Sons,Inc. [参考:19]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号