...
首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >CHARMM Fluctuating Charge Force Field for Proteins:II Protein/Solvent Properties from Molecular Dynamics Simulations Using a Nonadditive Electrostatic Model
【24h】

CHARMM Fluctuating Charge Force Field for Proteins:II Protein/Solvent Properties from Molecular Dynamics Simulations Using a Nonadditive Electrostatic Model

机译:CHARMM的蛋白质波动电荷力场:使用非加性静电模型的分子动力学模拟的II蛋白质/溶剂性质

获取原文
获取原文并翻译 | 示例
           

摘要

A fluctuating charge(FQ)force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential.The proteins include 1FSV,1ENH,1PGB,1VII,1H8K,and 1CRN,representing both helical and beta-sheet secondary structural elements.Constant pressure and temperature(NPT)molecular dynamics simulations are performed on time scales of several nanoseconds,the longest simulations yet reported using explicitly polarizable all-atom empirical potentials(for both solvent and protein)in the condensed phase.In terms of structure,the FQ force field allows deviations from native structure up to 2.5 A(with a range of 1.0 to 2.5 A).This is commensurate to the performance of the CHARMM22 nonpolarizable model and other currently existing polarizable models.Importantly,secondary structural elements maintain native structure in general to within 1 A(both helix and beta-strands),again in good agreement with the nonpolarizable case.In qualitative agreement with QM/MM ab initio dynamics on crambin(Liu et al.Proteins 2001,44,484),there is a sequence dependence of average condensed phase atomic charge for all proteins,a dependence one would anticipate considering the differing chemical environments around individual atoms;this is a subtle quantum mechanical feature captured in the FQ model but absent in current state-of-the-art nonpolarizable models.Furthermore,there is a mutual polarization of solvent and protein in the condensed phase.Solvent dipole moment distributions within the first and second solvation shells around the protein display a shift towards higher dipole moments(increases on the order of 0.2-0.3 Debye)relative to the bulk;protein polarization is manifested via the enhanced condensed phase charges of typical polar atoms such as backbone carbonyl oxygens,amide nitrogens,and amide hydrogens.Finally,to enlarge the sample set of proteins,gas-phase minimizations and 1 ps constant temperature simulations are performed on various-sized proteins to compare to earlier work by Kaminsky et al.(J Comp Chem 2002,23,1515).The present work establishes the feasibility of applying a fully polarizable force field for protein simulations and demonstrates the approach employed in extending the CHARMM force field to include these effects.
机译:将波动电荷(FQ)力场应用于以TIP4P-FQ势表示的显性可极化溶剂中的六个小蛋白质的分子动力学模拟。蛋白质包括1FSV,1ENH,1PGB,1VII,1H8K和1CRN,分别表示螺旋和beta-sheet二级结构元素。恒定压力和温度(NPT)分子动力学模拟在几纳秒的时间尺度上进行,这是迄今为止最长的模拟,使用的是在冷凝相中使用明确极化的全原子经验势(对于溶剂和蛋白质而言)在结构方面,FQ力场允许与原始结构的最大偏差为2.5 A(范围为1.0至2.5 A),这与CHARMM22不可极化模型和其他现有极化模型的性能相当。二级结构元素通常将天然结构维持在1 A以内(螺旋和β链),并且与非极化情况也很好地吻合。与QM / MM的初始动力学吻合(Liu et al.Proteins 2001,44,484),所有蛋白质的平均凝聚相原子电荷具有序列依赖性,考虑到单个原子周围不同的化学环境,可以预期这种依赖性;这是FQ模型中捕获的微妙的量子力学特征,但在当前最新的非极化模型中却不存在。此外,在冷凝相中溶剂和蛋白质存在相互极化。第一相中的溶剂偶极矩分布蛋白质周围的第二个溶剂化壳层显示相对于整体向更高的偶极矩移动(增加0.2-0.3 Debye);蛋白质极化是通过典型极性原子(例如主链羰基氧)的增强的凝聚相电荷来体现的,最后,为扩大蛋白质样品集,进行了气相最小化和1 ps恒温模拟与Kaminsky等人(J Comp Chem 2002,23,1515)的早期工作进行比较,目前的工作建立了将完全可极化的力场用于蛋白质模拟的可行性,并证明了用于扩展蛋白质的方法CHARMM力场包括这些效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号