...
首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Extending the Treatment of Backbone Energetics in Protein Force Fields:Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations
【24h】

Extending the Treatment of Backbone Energetics in Protein Force Fields:Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations

机译:扩展蛋白质力场中骨干能量学的治疗:在分子动力学模拟中再现蛋白质构象分布的气相量子力学的局限性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computational studies of proteins based on empirical force fields represent a powerful tool to obtain structure-function relationships at an atomic level,and are central in current efforts to solve the protein folding problem.The results from studies applying these tools are,however,dependent on the quality of the force fields used.In particular,accurate treatment of the peptide backbone is crucial to achieve representative conformational distributions in simulation studies.To improve the treatment of the peptide backbone,quantum mechanical (QM) and molecular mechanical (MM) calculations were undertaken on the alanine,glycine,and proline dipeptides,and the results from these calculations were combined with molecular dynamics (MD) simulations of proteins in crystal and aqueous environments.QM potential energy maps of the alanine and glycine dipeptides at the LMP2/cc-pVxZ//MP2/6-31G~* levels,where x=D,T,and Q,were determined,and are compared to available QM studies on these molecules.The LMP2/cc-pVQZ//MP2/6-31G~* energy surfaces for all three dipeptides were then used to improve the MM treatment of the dipeptides.These improvements included additional parameter optimization via Monte Carlo simulated annealing and extension of the potential energy function to contain peptide backbone phi,PHI dihedral crossterms or a phi,phi,PHI grid-based energy correction term.Simultaneously,MD simulations of up to seven proteins in their crystalline environments were used to validate the force field enhancements.Comparison with QM and crystallographic data showed that an additional optimization of the phi,PHI dihedral parameters along with the grid-based energy correction were required to yield significant improvements over the CHARMM22 force field.However,systematic deviations in the treatment of phi and PHI in the helical and sheet regions were evident.Accordingly,empirical adjustments were made to the grid-based energy correction for alanine and glycine to account for these systematic differences.These adjustments lead to greater deviations from QM data for the two dipeptides but also yielded improved agreement with experimental crystallographic data.These improvements enhance the quality of the CHARMM force field in treating proteins.This extension of the potential energy function is anticipated to facilitate improved treatment of biological macromolecules via MM approaches in general.
机译:基于经验力场的蛋白质计算研究是获得原子级结构-功能关系的有力工具,并且是当前解决蛋白质折叠问题的中心。然而,使用这些工具的研究结果取决于尤其是,对肽骨架进行正确的处理对于在模拟研究中获得代表性的构象分布至关重要。为了改善对肽骨架的处理,对量子力学(QM)和分子力学(MM)进行了计算对丙氨酸,甘氨酸和脯氨酸二肽进行了分析,并将这些计算结果与晶体和水性环境中蛋白质的分子动力学(MD)模拟相结合。在LMP2 / cc-处丙氨酸和甘氨酸二肽的QM势能图确定了pVxZ // MP2 / 6-31G〜*的水平(其中x = D,T和Q),并与针对这些分子的可用QM研究进行了比较。然后使用所有三个二肽的LMP2 / cc-pVQZ // MP2 / 6-31G〜*能级表面来改进二肽的MM处理,这些改进包括通过Monte Carlo模拟退火进行的附加参数优化以及势能函数的扩展包含肽骨架phi,PHI二面角交叉项或基于phi,phi,PHI网格的能量校正项。同时,使用多达7种蛋白质在其结晶环境中的MD模拟来验证力场增强。与QM和晶体学比较数据表明,需要对phi,PHI二面体参数进行额外的优化以及基于网格的能量校正,以显着改善CHARMM22力场。但是,在螺旋和薄板区域中对phi和PHI的处理存在系统性偏差因此,对基于网格的丙氨酸和甘氨酸能量校正进行了经验调整,以说明这些系统原子差异:这些调整导致两个二肽与QM数据的偏差更大,但与实验晶体学数据的一致性得到了改善,这些改进增强了CHARMM力场在蛋白质处理中的质量。通常通过MM方法促进对生物大分子的改进治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号