首页> 外文期刊>Journal of chemical information and modeling >Understanding the Structure-Function Relationship of Lysozyme Resistance in Staphylococcus aureus by Peptidoglycan O-Acetylation Using Molecular Docking, Dynamics, and Lysis Assay
【24h】

Understanding the Structure-Function Relationship of Lysozyme Resistance in Staphylococcus aureus by Peptidoglycan O-Acetylation Using Molecular Docking, Dynamics, and Lysis Assay

机译:通过分子对接,动力学和裂解法的肽聚糖O乙酰化了解金黄色葡萄球菌耐溶菌酶的结构-功能关系。

获取原文
获取原文并翻译 | 示例
       

摘要

Lysozyme is an important component of the host innate defense system. It cleaves the beta-1,4 glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine of bacterial peptidoglycan and induce bacterial lysis. Staphylococcus aureus (S. aureus), an opportunistic commensal pathogen, is highly resistant to lysozyme, because of the O-acetylation of peptidoglycan by O-acetyl transferase (oatA). To understand the structure-function relationship of lysozyme resistance in S. aureus by peptidoglycan O-acetylation, we adapted an integrated approach to (i) understand the effect of lysozyme on the growth of S. aureus parental and the oatA mutant strain, (ii) study the lysozyme induced lysis of exponentially grown and stationary phase of both the S. aureus parental and oatA mutant strain, (iii) investigate the dynamic interaction mechanism between normal (de-O-acetylated) and O-acetylated peptidoglycan substrate in complex with lysozyme using molecular docking and molecular dynamics simulations, and (iv) quantify lysozyme resistance of S. aureus parental and the oatA mutant in different human biological fluids. The results indicated for the first time that the active site cleft of lysozyme binding with O-acetylated peptidoglycan in S. aureus was sterically hindered and the structural stability was higher for the lysozyme in complex with normal peptidoglycan. This could have conferred reduced survival of the S. aureus oatA mutant in different human biological fluids. Consistent with this computational analysis, the experimental data confirmed decrease in the growth, lysozyme induced lysis, and lysozyme resistance, due to peptidoglycan O-acetylation in S. aureus.
机译:溶菌酶是宿主先天防御系统的重要组成部分。它切割细菌肽聚糖的N-乙酰基尿酸与N-乙酰基葡糖胺之间的beta-1,4糖苷键并诱导细菌裂解。金黄色葡萄球菌(金黄色葡萄球菌)是一种机会性共生病原体,由于肽聚糖通过O-乙酰基转移酶(oatA)进行O-乙酰化,因此对溶菌酶具有高度抗性。为了了解肽聚糖O-乙酰化对金黄色葡萄球菌抗溶菌酶的结构-功能关系,我们采用了一种综合方法来(i)了解溶菌酶对金黄色葡萄球菌亲本和燕麦突变菌株的生长的影响,(ii )研究溶菌酶诱导的金黄色葡萄球菌亲本和oatA突变菌株的指数生长期和固定期的裂解,(iii)研究复合物中正常(脱-O-乙酰化)和O-乙酰化肽聚糖底物之间的动态相互作用机制溶菌酶使用分子对接和分子动力学模拟,以及(iv)量化金黄色葡萄球菌亲本和燕麦aA突变体在不同人类生物液中的溶菌酶抗性。结果首次表明,在金黄色葡萄球菌中,溶菌酶与O-乙酰化肽聚糖结合的活性位点在空间上受阻,溶菌酶在与正常肽聚糖复合物中的结构稳定性更高。这可能导致减少的金黄色葡萄球菌oatA突变体在不同人类生物液中的存活。与该计算分析一致,实验数据证实由于金黄色葡萄球菌中的肽聚糖O-乙酰化,生长,溶菌酶诱导的裂解和溶菌酶抗性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号