...
首页> 外文期刊>Journal of Climate >Synoptic Circulation and Land Surface Influences on Convection in the Midwest U.S. 'Corn Belt' during the Summers of 1999 and 2000. Part II: Role of Vegetation Boundaries
【24h】

Synoptic Circulation and Land Surface Influences on Convection in the Midwest U.S. 'Corn Belt' during the Summers of 1999 and 2000. Part II: Role of Vegetation Boundaries

机译:天气环流和地面对1999年和2000年夏季美国中西部“玉米带”对流的影响。第二部分:植被边界的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In Part I of this observational study inquiring into the relative influences of 'top down' synoptic atmospheric conditions and 'bottom up' land surface mesoscale conditions in deep convection for the humid lowlands of the Midwest U.S. Central Corn Belt (CCB), the composite atmospheric environments for afternoon and evening periods of convection (CV) versus no convection (NC) were determined for two recent summers (1999 and 2000) having contrasting precipitation patterns and amounts. A close spatial correspondence was noted between composite synoptic features representing baroclinity and upward vertical motion with the observed precipitation on CV days when the 'background' (i.e., free atmosphere) wind speed exceeded approximately 10 m s-1 at 500 hPa (i.e., 'stronger flow'). However, on CV days when wind speeds were < similar to 10 m s-1 (i.e., 'weaker flow'), areas of increased precipitation can be associated with synoptic composites that are not so different from those for corresponding NC days. From these observations, the presence of a land surface mesoscale influence on deep convection and precipitation is inferred that is better expressed on weaker flow days. Climatically, a likely candidate for enhancing low-level moisture convergence to promote deep convection are the quasi-permanent vegetation boundaries (QPVBs) between the two major land use and land cover (LULC) types of crop and forest that characterize much of the CCB. Accordingly, in this paper the role of these boundaries on summer precipitation variations for the CCB is extracted in two complementary ways: 1) for contrasting flow day types in the summers 1999 and 2000, by determining the spatially and temporally aggregated land surface influence on deep convection from composites of thermodynamic variables [e.g., surface lifted index (SLI), level of free convection (LFC), and lifted condensation level (LCL)] that are obtained from mapped data of the 6-h NCEP-NCAR reanalyses (NNR), and 0000 UTC rawinsonde ascents; and 2) for summer seasons 1995-2001, from the statistical associations of satellite-retrieved LULC boundary attributes (i.e., length and width) and precipitation at high spatial resolutions. For the 1999 and 2000 summers (item 1 above), thermodynamic composites determined for V(500) categories having minimal differences in synoptic meteorological fields on CV minus NC (CV - NC) days (i.e., weaker flow), show statistically significant increases in atmospheric moisture (e.g., greater precipitable water; lower LCL and LFC) and static instability [e.g., positive convective available potential energy (CAPE)] compared to NC days. Moreover, CV days for both weaker and stronger background flow have associated subregional-scale thermodynamic patterns indicating free convection at the earth's surface, supported by a synoptic pattern of at least weakly upward motion of air in the midtroposphere in contrast to NC days. The possibility that aerodynamic contrasts along QPVBs readily permit air to be lofted above the LFC when the lower atmosphere is moist, thereby assisting or enhancing deep convection on CV days, is supported by the multiyear analysis (item 2 above). In early summer when LULC boundaries are most evident, precipitation on weaker flow days is significantly greater within 20 km of boundaries than farther away, but there is no statistical difference on stronger flow days. Statistical relationships between boundary mean attributes and mean precipitation change sign between early summer (positive) and late summer (negative), in accord with shifts in the satellite-retrieved maximum radiances from forest to crop areas. These phenological changes appear related, primarily, to contrasting soil moisture and implied evapotranspiration differences. Incorporating LULC boundary locations and phenological status into reliable forecast fields of lower-to-midtropospheric humidity and wind speed should lead to improved short-term predictions of convective precipitation
机译:在这项观察性研究的第一部分中,研究了中西部美国中部玉米带(CCB)湿润低地深对流中“自上而下”的天气状况和“自下而上”的地面中尺度状况的相对影响,即复合大气确定了最近两个夏季(1999年和2000年)降水模式和降水量不同的下午和晚上对流(CV)与非对流(NC)的环境。当“背景”(即自由大气)风速在500 hPa(即“风速”)超过约10 m s-1时,在代表气压的复合天气特征和向上垂直运动与CV日观测到的降水之间发现了紧密的空间对应关系。流量更大”)。但是,在风速<类似于10 m s-1(即“弱气流”)的CV日,降水增加的区域可能与天气资料相关,与相应的NC天相差不大。从这些观察中,可以推断出陆地表面中尺度对深层对流和降水的影响,这在较弱的流动日中表现得更好。在气候上,增强低水平水分汇聚以促进深对流的一种可能的候选方案是两种主要土地利用和作物和森林的土地覆盖(LULC)类型之间的准永久性植被边界(QPVBs),这是大多数CCB的特征。因此,本文以两种互补的方式提取了这些边界在CCB夏季降水变化中的作用:1)通过确定时空聚集的地面对深水的影响来对比1999年和2000年夏季的流动日类型。由6小时NCEP-NCAR再分析(NNR)的映射数据获得的热力学变量[例如,表面提升指数(SLI),自由对流水平(LFC)和提升冷凝水平(LCL)]的复合对流,以及0000 UTC rawinsonde上升;和2)1995-2001年夏季,来自卫星检索的LULC边界属性(即长度和宽度)和高空间分辨率下的降水量的统计关联。对于1999年和2000年夏季(上面的项目1),确定的V(500)类热力学复合材料在CV减去NC(CV-NC)天(即,流动较弱)的天气天气场中具有最小差异(即流量较弱),表明与NC天相比,大气湿度(例如,更多的可沉淀水;较低的LCL和LFC)和静态不稳定性(例如,对流可利用的正势能(CAPE))。此外,对于较弱和较强的本底流量,CV天都有相关的分区热力学模式,表明在地球表面自由对流,与对流层天相比,对流层中空气至少具有微弱的向上运动的天气模式支持。多年期分析(以上第2项)支持了这样的可能性,即当低层大气潮湿时,沿QPVB的空气动力学对比很容易使空气升空到LFC上方,从而有助于或增强CV日的深对流。在LULC边界最明显的初夏,在边界较弱的20 km内,流量较弱的日子比远处的降雨量明显多,但流量较弱的日子没有统计学差异。边界平均属性与夏季初(正)和夏末(负)之间的平均降水变化标志之间的统计关系,与从森林到作物区域的卫星获取最大辐射的变化一致。这些物候变化似乎主要与对比土壤水分和隐含的蒸散量有关。将LULC边界位置和物候状态纳入对流层中低层湿度和风速的可靠预报领域,应能改善对流降水的短期预报

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号