首页> 外文期刊>Journal of Climate >An Assessment of the Sea Surface Temperature Influence on Surface WindStress in Numerical Weather Prediction and Climate Models
【24h】

An Assessment of the Sea Surface Temperature Influence on Surface WindStress in Numerical Weather Prediction and Climate Models

机译:数值天气预报和气候模型中海面温度对表面风应力的影响评估

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of six climate models to capture the observed coupling between SST and surface wind stress in the vicinity of strong midlatitude SST fronts is analyzed. The analysis emphasizes air-sea interactions associated with ocean meanders in the eastward extensions of major western boundary current systems such as the Gulf Stream, Kuroshio, and Agulhas Current. Satellite observations of wind stress from the SeaWinds scatterometer on NASA's Quick Scatterometer and SST from the Advanced Microwave Scanning Radiometer clearly indicate the influence of SST on surface wind stress on scales smaller than about 30 degree longitude x 10 degree latitude. Spatially high-pass-filtered SST and wind stress variations are linearly related, with higher SST associated with higher wind stress. The influence of SST on wind stress is also clearly identifiable in the ECMWF operational forecast model, having a grid resolution of 0.35 degree x 0.35 degree (T511). However, the coupling coefficient between wind stress and SST, as indicated by the slope of the linear least squares fit, is only half as strong as for satellite observations. The ability to simulate realistic air-sea interactions is present to varying degrees in the coupled climate models examined. The Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) high-resolution version (HIRES) (1.1 degree x 1.1 degree , T106) and the NCAR Community Climate System Model 3.0 (1.4 degree x 1.4 degree , T85) are the highest-resolution models considered and produce the most realistic air-sea coupling associated with midlatitude current systems. Coupling coefficients between SST and wind stress in MIROC3.2_HIRES and the NCAR model are at least comparable to those in the ECMWF operational model. The spatial scales of midlatitude SST variations and SST-induced wind perturbations in MIROC3.2_HIRES are comparable to those of satellite observations. The spatial scales of SST variability in the NCAR model are larger than those in the ECMWF model and satellite observations, and hence the spatial scales of SST-induced perturbations in the wind fields are larger. It is found that the ability of climate models to simulate air-sea interactions degrades with decreasing grid resolution. SST anomalies in the GFDL Climate Model 2.0 (CM2.0) (2.0 degree x 2.5 degree ), Met Office Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) (2.5 degree x 3.8 degree ), and MIROC3.2 medium-resolution version (MEDRES) (2.8 degree x 2.8 degree , T42) have larger spatial scales and are more geographically confined than in the higher-resolution models. The GISS Model E20/Russell (4.0 degree x 5.0 degree ) is unable to resolve the midlatitude ocean eddies that produce prominent air-sea interaction. Notably, MIROC3.2_MEDRES exhibits much weaker coupling between wind stress and SST than does the higher vertical and horizontal resolution version of the same model. GFDL CM2.0 and Met Office HadCM3 exhibit a linear relationship between SST and wind stress. However, coupling coefficients for the Met Office model are significantly weaker than in the GFDL and higher-resolution models. In addition to model grid resolution (both vertical and horizontal), deficiencies in the parameterization of boundary layer processes may be responsible for some of these differences in air-sea coupling between models and observations.
机译:分析了六个气候模型捕获强中纬度SST前沿附近观测到的SST和表面风应力之间耦合的能力。该分析强调了主要西部边界洋流系统(如墨西哥湾流,黑潮和阿古拉斯海流)向东扩展中与海洋曲折有关的海海相互作用。卫星对NASA快速散射仪上的SeaWinds散射仪的风应力和先进微波扫描辐射计上的SST的卫星观测清楚地表明,SST对表面风应力的影响小于经度30度x 10度纬度。空间高通滤波后的SST和风应力变化呈线性关系,而更高的SST与更高的风应力相关。在具有0.35度x 0.35度(T511)网格分辨率的ECMWF运行预测模型中,也可以清楚地确定SST对风应力的影响。但是,如线性最小二乘拟合的斜率所示,风应力与SST之间的耦合系数仅是卫星观测值的一半。在所研究的耦合气候模型中,模拟现实海-气相互作用的能力在不同程度上存在。气候3.2的跨学科研究模型(MIROC3.2)的高分辨率版本(HIRES)(1.1度x 1.1度,T106)和NCAR社区气候系统模型3.0(1.4度x 1.4度,T85)是最高的,考虑到高分辨率模型,并产生与中纬度洋流系统相关的最现实的海海耦合。 MIROC3.2_HIRES和NCAR模型中SST与风应力之间的耦合系数至少可与ECMWF运行模型中的系数相比较。 MIROC3.2_HIRES中纬度SST变化和SST引起的风扰动的空间尺度与卫星观测的尺度相当。 NCAR模型中SST变异性的空间尺度大于ECMWF模型和卫星观测的空间尺度,因此SST引起的风场扰动的空间尺度更大。发现气候模型模拟海气相互作用的能力随着网格分辨率的降低而降低。 GFDL气候模型2.0(CM2.0)(2.0度x 2.5度),美国气象局第三哈德利中心耦合的海洋-大气总环流模型(HadCM3)(2.5度x 3.8度)和MIROC3.2中型海温异常-分辨率版本(MEDRES)(2.8度x 2.8度,T42)比高分辨率模型具有更大的空间比例,并且在地理上受到限制。 GISS E20 /罗素(4.0度x 5.0度)模型无法解决产生明显的海海相互作用的中纬度海洋涡流。值得注意的是,MIROC3.2_MEDRES与相同模型的垂直和水平分辨率版本相比,风应力与SST之间的耦合弱得多。 GFDL CM2.0和Met Office HadCM3在SST和风应力之间表现出线性关系。但是,与GFDL模型和高分辨率模型相比,Met Office模型的耦合系数要弱得多。除了模型网格分辨率(垂直和水平)外,边界层过程参数化方面的缺陷还可能导致模型和观测值之间的海海耦合差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号