首页> 外文期刊>Journal of chemical theory and computation: JCTC >Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules
【24h】

Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules

机译:非谐系统的热力学:分子的非耦合模式近似

获取原文
获取原文并翻译 | 示例
           

摘要

The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HOhf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentials are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HOhf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By contrast, the HOhf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HOhf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol(-1) K-1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol(-1) K-1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol(-1) K-1, which is less than one-third of the RMS error of the HOhf (2.69 cal mol(-1) K-1) and UM-N (2.41 cal mol(-1) K-1) models.
机译:使用非耦合模式(UM)近似计算选定分子的分配函数,热容量,熵和焓,其中将内部运动的全尺寸势能面建模为每种模式的独立一维势能之和。这种方法的计算成本与使用谐波频率(HOhf)的标准谐波振荡器振动分析的分子大小相同。为了计算热力学性质,建立了用于获得每种模式的能级的计算协议。 UM逼近的精度在很大程度上取决于如何定义每个模式的一维电势。如果电势是由能量决定的,它是沿着每个正常模式(UM-N)的位移的函数,则与HOhf模型相比,所计算的热力学性质的准确性不会得到明显改善。通过分别使用沿着扭转坐标的能量表面和其余的振动法线模式(UM-VT)构造内部旋转和振动的电势,可以实现重大改进。对于过氧化氢及其在300 K的同位物,UM-VT平均捕获70%以上的分配功能。相比之下,HOhf模型和UM-N的捕获率不超过50%。对于选择的C2至C8直链和支链烷烃以及具有不同部分的物质的测试集,尽管HO的RMS误差与参考值相比,使用HOhf模型,UM-N和UM-VT计算的焓都非常准确型号和UM-N略高于UM-VT。但是,在这三个模型之间,熵计算的准确性差异很大。对于同一测试集,通过UM-VT计算的标准熵的RMS误差在1000 K下为2.18 cal mol(-1)K-1。相比之下,使用HO模型和UM-N获得的RMS误差为6.42和5.73 cal mol(-1)K-1。对于由从C5到C8的九种烷烃组成的测试集,使用UM-VT模型计算的热容与实验值一致,均方根误差为0.78 cal mol(-1)K-1,小于HOhf(2.69 cal mol(-1)K-1)和UM-N(2.41 cal mol(-1)K-1)模型的RMS误差的三分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号