首页> 外文期刊>Journal of chemical theory and computation: JCTC >Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems
【24h】

Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

机译:张量阶可变的树张量网络状态:强相关系统的一种有效的多引用方法

获取原文
获取原文并翻译 | 示例
           

摘要

We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.
机译:我们研究了具有可变张量阶数的树-张量网络状态(TTNS)方法,用于量子化学。 TTNS是一种变分方法,可以有效地近似张量积形式的完整活动空间(CAS)配置相互作用(CI)波函数。 TTNS可被视为矩阵乘积状态(MPS)方法的高阶概括。 MPS波函数公式化为跨越原始CAS-CI问题的截短希尔伯特空间的多粒子基础上的矩阵乘积。这些矩阵属于以一维数组组织的活动轨道,而TTNS中的张量是在相同轨道的树状排列上定义的。树结构是有利的,因为树中两个任意轨道之间的距离仅与轨道数N成对数缩放,而在MPS数组中缩放是线性的。从计算成本的观点来看,发现在两种布置中将高度相关的轨道保持在紧密附近是有益的。因此,TTNS ansatz更适合于具有众多高度相关轨道的多参考问题。为了利用TTNS的优势,设计了一种基于量子信息理论和纠缠算法来优化树张量网络拓扑的新算法。在避免LiF发生离子中性交叉方面,说明了TTNS方法的优越性能。还表明,可以仅使用基态特性(即单轨道纠缠)来定位避免的LiF交叉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号