首页> 外文期刊>Journal of chemical theory and computation: JCTC >Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory
【24h】

Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory

机译:超快电子动力学的计算基准:波函数方法与密度泛函理论

获取原文
获取原文并翻译 | 示例
           

摘要

Attosecond electron dynamics in small- and medium-sized molecules, induced by an ultrashort strong optical pulse, is studied computationally for a frozen nuclear geometry. The importance of exchange and correlation effects on the nonequilibrium electron dynamics induced by the interaction of the molecule with the strong optical pulse is analyzed by comparing the solution of the time-dependent Schrodinger equation based on the correlated field-free stationary electronic states computed with the equation-of-motion coupled cluster singles and doubles and the complete active space multi-configurational self-consistent field methodologies on one hand, and various functionals in real-time time-dependent density functional theory (TD-DFT) on the other. We aim to evaluate the performance of the latter approach, which is very widely used for nonlinear absorption processes and whose computational cost has a more favorable scaling with the system size. We focus on LiH as a toy model for a nontrivial molecule and show that our conclusions carry over to larger molecules, exemplified by ABCU (C10H19N). The molecules are probed with IR and UV pulses whose intensities are not strong enough to significantly ionize the system. By comparing the evolution of the time-dependent field-free electronic dipole moment, as well as its Fourier power spectrum, we show that TD-DFT performs qualitatively well in most cases. Contrary to previous studies, we find almost no changes in the TD-DFT excitation energies when excited states are populated. Transitions between states of different symmetries are induced using pulses polarized in different directions. We observe that the performance of TD-DFT does not depend on the symmetry of the states involved in the transition.
机译:通过计算研究了冻结核的几何形状,并研究了超短强光脉冲在中小分子中产生的阿秒电子动力学。通过比较基于时间的Schrodinger方程的解,并分析了交换和相关效应对分子与强光脉冲相互作用引起的非平衡电子动力学的重要性,该时间相关的Schrodinger方程的解与运动方程耦合的簇单双打,一方面是完整的主动空间多组态自洽场方法,另一方面是实时时变密度泛函理论(TD-DFT)中的各种泛函。我们旨在评估后一种方法的性能,该方法非常广泛地用于非线性吸收过程,并且其计算成本随系统大小具有更有利的缩放比例。我们专注于LiH作为非平凡分子的玩具模型,并证明我们的结论适用于更大的分子,例如ABCU(C10H19N)。用IR和UV脉冲探测分子,其强度不足以显着电离系统。通过比较随时间变化的无场电子偶极矩及其傅立叶功率谱的演化,我们表明TD-DFT在大多数情况下的定性性能良好。与先前的研究相反,当激发态被填充时,我们发现TD-DFT激发能几乎没有变化。使用在不同方向上极化的脉冲来诱导不同对称状态之间的转换。我们观察到TD-DFT的性能并不取决于过渡所涉及的状态的对称性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号