首页> 外文期刊>Journal of chemical theory and computation: JCTC >Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins
【24h】

Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins

机译:阳离子相互作用与金属蛋白中的第一和第二配位壳配体的量子效应。

获取原文
获取原文并翻译 | 示例
           

摘要

Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K+, Na+, and Ca2+ remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finite temperature. Several solutions to this challenge have been proposed in the field, ranging from the recently developed Drude polarizable force-field for simulations of metalloproteins to approximate tight-binding density functional theory (DFTB). To delineate the usefulness of different approximations, we examined the accuracy of three recent and commonly used theoretical models and numerical algorithms, namely, CHARMM C36, the latest developed Drude polarizable force fields, and DFTB3 with the latest 3OB parameters. We performed MD simulations for 30 cation-selective proteins with high-resolution X-ray structures to create ensembles of structures for analysis with different levels of theory, e.g., additive and polarizable force fields, DFTB3, and DFT. The results from DFT computations were used to benchmark CHARMM C36, Drude, and DFTB3 performance. The explicit modeling of quantum effects unveils the key electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+.
机译:尽管进行了数十年的研究,但负责蛋白质对关键生理阳离子K +,Na +和Ca2 +的高亲和力和特异性的主要机制仍然是一个热门争论的话题。辩论的核心是对蛋白质中电荷分布对离子结合的静电响应的准确描述的明显需求(或缺乏这种需求)。这些影响的范围从直接连接原子的部分电子极化到与部分电荷转移和电子离域效应有关的远程效应。尽管金属蛋白对阳离子识别的准确建模需要使用量子力学(QM)计算,但主要生物分子模拟软件包中使用的最流行的近似方法依赖于电子极化效应的隐式建模。也就是说,需要进行离子与蛋白质结合的高级QM计算,但是由于反应位点模型的尺寸较大以及需要在有限的温度下彻底采样构象空间,因此它们通常不可行。在该领域中已经提出了针对该挑战的几种解决方案,从最近开发的用于金属蛋白模拟的Drude可极化力场到近似紧密结合密度泛函理论(DFTB)。为了描述不同近似值的有用性,我们检查了三种最新且常用的理论模型和数值算法的准确性,即CHARMM C36,最新开发的Drude极化力场和具有最新3OB参数的DFTB3。我们对30种具有高分辨率X射线结构的阳离子选择性蛋白进行了MD模拟,以创建具有不同理论水平(例如加性和极化力场,DFTB3和DFT)的分析结构体。 DFT计算的结果用于基准CHARMM C36,Drude和DFTB3性能。量子效应的显式建模揭示了蛋白质位点的关键静电特性以及特定离子-蛋白质相互作用的重要性。最有趣的发现之一是蛋白质的次级配位壳以阳离子依赖的方式受到明显干扰,显示出显着的离域化以及结合Ca2 +后电荷转移和极化的远距离影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号