首页> 美国卫生研究院文献>ACS AuthorChoice >Quantum Effects in Cation Interactions with Firstand Second Coordination Shell Ligands in Metalloproteins
【2h】

Quantum Effects in Cation Interactions with Firstand Second Coordination Shell Ligands in Metalloproteins

机译:阳离子与第一相互作用中的量子效应金属蛋白中的第二和第二配位壳配体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K+, Na+, and Ca2+ remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finitetemperature. Several solutions to this challenge have been proposedin the field, ranging from the recently developed Drude polarizableforce-field for simulations of metalloproteins to approximate tight-bindingdensity functional theory (DFTB). To delineate the usefulness of differentapproximations, we examined the accuracy of three recent and commonlyused theoretical models and numerical algorithms, namely, CHARMM C36,the latest developed Drude polarizable force fields, and DFTB3 withthe latest 3OB parameters. We performed MD simulations for 30 cation-selectiveproteins with high-resolution X-ray structures to create ensemblesof structures for analysis with different levels of theory, e.g.,additive and polarizable force fields, DFTB3, and DFT. The resultsfrom DFT computations were used to benchmark CHARMM C36, Drude, andDFTB3 performance. The explicit modeling of quantum effects unveilsthe key electrostatic properties of the protein sites and the importanceof specific ion-protein interactions. One of the most interestingfindings is that secondary coordination shells of proteins are noticeablyperturbed in a cation-dependent manner, showing significant delocalizationand long-range effects of charge transfer and polarization upon bindingCa2+.
机译:尽管进行了数十年的研究,但主要机理仍是蛋白质对关键生理阳离子K + ,Na + 和Ca 2 + 的高度亲和力和特异性的原因。 sup>仍然是一个热门话题。辩论的核心是对蛋白质中电荷分布对离子结合的静电响应的准确描述的明显需求(或缺乏这种需求)。这些效应的范围从直接连接原子的部分电子极化到与部分电荷转移和电子离域效应有关的远程效应。虽然金属蛋白对阳离子识别的准确建模需要使用量子力学(QM)计算,但在主要生物分子模拟软件包中使用的最流行的近似方法依赖于电子极化效应的隐式建模。也就是说,需要进行离子与蛋白质结合的高级QM计算,但是由于反应位点模型的尺寸较大以及需要有限地对构象空间进行彻底采样,因此它们通常不可行温度。已经提出了针对这一挑战的几种解决方案在该领域,从最近开发的Drude偏光镜力场,用于模拟金属蛋白近似紧密结合密度泛函理论(DFTB)。划定不同的有用性近似,我们检查了三个最近和常见的准确性使用了理论模型和数值算法,即CHARMM C36,最新开发的Drude可极化力场和DFTB3最新的3OB参数。我们进行了30种阳离子选择性的MD模拟具有高分辨率X射线结构的蛋白质来产生集合体具有不同理论水平的分析结构,例如加性和极化力场,DFTB3和DFT。结果来自DFT计算的结果用于对CHARMM C36,Drude和DFTB3性能。量子效应的显式建模揭晓蛋白质位点的关键静电特性及其重要性特定的离子-蛋白质相互作用。最有趣的之一研究发现蛋白质的二级配位壳明显以阳离子依赖的方式受到干扰,显示出明显的离域以及电荷转移和极化对结合的远程影响Ca 2 +

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号