首页> 外文期刊>Journal of chemical theory and computation: JCTC >Predicting the Sensitivity of Multiscale Coarse-Grained Models to their Underlying Fine-Grained Model Parameters
【24h】

Predicting the Sensitivity of Multiscale Coarse-Grained Models to their Underlying Fine-Grained Model Parameters

机译:预测多尺度粗粒模型对其基础细粒模型参数的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

The sensitivity of a coarse-grained (CG) force field to changes in the underlying fine-grained (FG) model from which it was derived provides modeling insight for improving transferability across interaction parameters, transferability across temperature, and the calculation of thermodynamic derivatives. Methods in the literature, such as multi-trajectory finite differences and reweighted finite differences, are either too computationally demanding to calculate within acceptable noise tolerances or are too biased for practical accuracy. This work presents a new reweighting-free, single-simulation formula that allows for practical, high signal-to-noise calculations of CG model sensitivity with respect to FG model interaction parameters and thermodynamic state points. This formula, the self-consistent basis (SCB) single point formula, determines the many-body sensitivity in a single step by approximating the derivative of the many-body potential projected onto the same set of trial functions as the sensitivity. A related diagnostic formula also derived in this paper is the self-consistent iterative (SCI) single point formula, which is useful for identifying the importance of many-body sources of error and verifying CG representability of observables. The SCI formula determines the many-body sensitivity iteratively via a series of partially self-consistent, variational approximations to the complete many-body sensitivity. The new, computationally efficient SCB formula shows substantially less noise than previous methods when applied to single site methanol and solvent-free sodium chloride CG models, though bias can remain a problem. It represents a novel method for calculating alchemical transferability across interaction parameters at low computational cost and with high fidelity, and the results point to new understanding of the current limits of CG model transferability.
机译:粗粒度(CG)力场对基础细粒度(FG)模型变化的敏感度,为改进交互参数之间的传递性,温度之间的传递性以及热力学导数的计算提供了建模见解。文献中的方法,例如多轨迹有限差分和重加权有限差分,要么在计算上要求太高而无法在可接受的噪声容差范围内进行计算,要么对于实际精度过于偏见。这项工作提出了一个新的免加权的单仿真公式,该公式允许针对FG模型的相互作用参数和热力学状态点进行实用的,高信噪比的CG模型灵敏度计算。该公式是自洽基础(SCB)单点公式,它通过近似投影到与该灵敏度相同的一组试验函数上的多体势的导数,从而一步确定多体灵敏度。本文还导出了一个相关的诊断公式,即自洽迭代(SCI)单点公式,该公式可用于确定多体错误源的重要性并验证可观察对象的CG可表示性。 SCI公式通过一系列完全自多体敏感度的部分自洽,变分近似值来迭代地确定多体敏感度。当应用于单中心甲醇和无溶剂氯化钠CG模型时,新的计算有效的SCB公式显示出比以前的方法低得多的噪声,尽管偏差仍然是一个问题。它代表了一种新的方法,可以以较低的计算成本和较高的保真度计算相互作用参数之间的化学转移性,其结果表明人们对CG模型转移性的当前限制有了新的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号