...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization
【24h】

Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization

机译:纳米金刚石-膜结合的自由能计算—形状和表面功能化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nanodiamonds (NDs) are nanoscale diamond particles with broad applications in biosensing, drug delivery, and long-term tracking. Their interactions with a membrane dictate both the endocytosis process and subsequent intracellular fate of the nanoparticles. However, details of ND-membrane association and the energetics of this process remain largely unknown. In this work, we use all-atom molecular dynamics (MD) simulations to determine the free energy profile and molecular details of ND-membrane association, with a focus on the impact of shape and surface functionalization. Through altogether 6.5 μs umbrella sampling on six atomistic ND models of different shapes (spherical or pyramidal) and surface functionalization (5%, 35%, and 55%), we show that nanodiamonds associate favorably with the membrane, which is largely driven by ND-lipid interactions. During its membrane association, the shape of a nanodiamond plays a key role in determining the location of the free energy minimum, while its surface functionalization modulates the depth of the minimum. Of the six models studied here, all spherical NDs adhere to the bilayer surface, whereas pyramidal NDs, with the exception of the most functionalized P55, anchor inside the membrane. Shape also dominates the height of the free energy barrier: the sharp pyramidal NDs have much lower barriers against penetrating a POPC bilayer than spherical ones. Our all-atom ND models and their bilayer association strength determined here can be combined with future coarse-grained or continuum models to further explore ND—membrane interactions on larger length scales.
机译:纳米金刚石(NDs)是纳米级金刚石颗粒,在生物传感,药物输送和长期跟踪中具有广泛的应用。它们与膜的相互作用决定了纳米颗粒的内吞作用和随后的细胞内命运。但是,ND膜关联的详细信息和此过程的能量学仍然未知。在这项工作中,我们使用全原子分子动力学(MD)模拟来确定ND膜缔合的自由能分布和分子细节,重点是形状和表面功能化的影响。通过在六个不同形状(球形或金字塔形)和表面功能化(5%,35%和55%)的原子性ND模型上总共进行6.5μs伞形采样,我们显示出纳米金刚石与膜的结合良好,这在很大程度上由ND驱动-脂质相互作用。在其膜缔合过程中,纳米金刚石的形状在确定自由能最小值的位置方面起着关键作用,而其表面功能化则调节了最小值的深度。在本文研究的六个模型中,所有球形ND均粘附在双层表面上,而金字塔形ND(功能最强大的P55除外)锚定在膜内。形状也支配着自由能垒的高度:锋利的金字塔形ND阻挡穿透POPC双层的阻挡层比球形阻挡层低得多。我们在此确定的全原子ND模型及其双层缔合强度可以与将来的粗粒或连续体模型结合使用,以进一步探索更大长度范围内的ND-膜相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号