首页> 外文期刊>Journal of chemical theory and computation: JCTC >First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects
【24h】

First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects

机译:超分子系统中非共价相互作用的第一性原理建模:多体效应的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Supramolecular host—guest systems play an important role for a wide range of applications in chemistry and biology. The prediction of the stability of host—guest complexes represents a great challenge to first-principles calculations due to an interplay of a wide variety of covalent and noncovalent interactions in these systems. In particular, van der Waals (vdW) dispersion interactions frequently play a prominent role in determining the structure, stability, and function of supramolecular systems. On the basis of the widely used benchmark case of the buckyball catcher complex (C_(60)@C_(60)H_(28)), we assess the feasibility of computing the binding energy of supramolecular host—guest complexes from first principles. Large-scale diffusion Monte Carlo (DMC) calculations are carried out to accurately determine the binding energy for the Q_(60)@C_(60)H_(28) complex (26 ± 2 kcal/ mol). On the basis of the DMC reference, we assess the accuracy of widely used and efficient density-functional theory (DFT) methods with dispersion interactions. The inclusion of vdW dispersion interactions in DFT leads to a large stabilization of the Q_(60)@C_(60)H_(28) complex. However, DFT methods including pairwise vdW interactions overestimate the stability of this complex by 9—17 kcal/mol compared to the DMC reference and the extrapolated experimental data. A significant part of this overestiniation (9 kcal/mol) stems from the lack of dynamical dielectric screening effects in the description of the molecular polarizability in pairwise dispersion energy approaches. The remaining overstabilization arises from the isotropic treatment of atomic polarizability tensors and the lack of many-body dispersion interactions. A further assessment of a different supramolecular system - glycine anhydride interacting with an amide macrocycle — demonstrates that both the dynamical screening and the many-body dispersion energy are complex contributions that are very sensitive to the underlying molecular geometry and type of bonding. We discuss the required improvements in theoretical methods for achieving "chemical accuracy" in the first-principles modeling of supramolecular systems.
机译:超分子宿主—客体系统在化学和生物学中的广泛应用中起着重要作用。由于这些系统中多种共价和非共价相互作用的相互作用,因此对主体-客体复合物稳定性的预测对第一性原理计算提出了巨大挑战。特别地,范德华(vdW)分散相互作用通常在决定超分子系统的结构,稳定性和功能方面起着重要作用。基于布基球捕手配合物(C_(60)@C_(60)H_(28))的广泛使用的基准案例,我们评估了根据第一性原理计算超分子宿主-客体配合物结合能的可行性。进行大规模扩散蒙特卡罗(DMC)计算以准确确定Q_(60)@C_(60)H_(28)配合物(26±2 kcal / mol)的结合能。在DMC参考的基础上,我们评估了具有色散相互作用的广泛使用的高效密度泛函理论(DFT)方法的准确性。在DFT中包含vdW色散相互作用会导致Q_(60)@C_(60)H_(28)络合物具有较大的稳定性。但是,与DMC参考和外推的实验数据相比,包括成对的vdW相互作用的DFT方法高估了该复合物的稳定性9-17 kcal / mol。这种过度估计的很大一部分(9 kcal / mol)是由于在描述成对色散能量方法中的分子极化率时缺乏动态介电屏蔽作用。剩余的过度稳定化起因于原子极化率张量的各向同性处理和缺乏多体分散相互作用。对不同的超分子系统(甘氨酸酐与酰胺大环相互作用)的进一步评估表明,动力学筛选和多体分散能都是复杂的贡献,对基本的分子几何结构和键合类型非常敏感。我们讨论了在超分子系统的第一原理建模中实现“化学准确性”的理论方法所需的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号