...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs
【24h】

Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs

机译:使用显式溶剂模拟了解RNA的灵活性:核糖体和第I组内含子反向扭结图案

获取原文
获取原文并翻译 | 示例
           

摘要

Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4μs of data in total) with different variants (ff4,ff99, ff99bsc0,ff99χ_(OL) andff99bsc0χ_(OL)) of the Cornell et al. force field. We test several ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the flexibility is discussed. Among the tested force fields, the latest χ_(OL) variant is essential to obtaining stable trajectories while all force field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and the type of ions.
机译:逆转弯是在核糖体和第I组内含子中出现的一种反复出现的肘状RNA构建块。它的序列签名几乎与传统的拐弯匹配。但是,反向弯折和传统弯折弯具有相反的弯曲方向。反向弯头转弯在其茎之间基本上没有任何第三级相互作用。我们报告了康奈尔核糖体和内含子反向扭折的无拘束的显式溶剂分子动力学模拟(总共7.4μs数据的54个模拟),具有康奈尔的不同变体(ff4,ff99,ff99bsc0,ff99χ_(OL)和ff99bsc0χ_(OL))等。力场。我们测试了几种离子条件和两种水模型。该模拟表征了与折叠功能几何相关的反向弯折的方向固有挠性。反向扭结转弯是迄今为止通过显式溶剂模拟研究的最灵活的RNA基序,能够在当前的模拟时标范围内自发地和可逆地采样各种几何形状,从紧密扭结的几何形状到柔性中间体,再到延伸的未扭结的结构。讨论了灵活性的可能的生化作用。在测试的力场中,最新的χ_(OL)变量对于获得稳定的轨迹至关重要,而所有缺少χ校正的力场版本都倾向于迅速退化为茎向无意义的梯形结构,其特征在于高抗糖苷扭力。显性水模型的类型对模拟的影响远大于浓度和离子类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号