首页> 外文期刊>Journal of chemical theory and computation: JCTC >Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition
【24h】

Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition

机译:使用破碎对称密度泛函理论表征IspH氧化态:对IspH机理和抑制作用的启示

获取原文
获取原文并翻译 | 示例
           

摘要

With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathway, which uses its [4Fe—4S] cluster to catalyze the formation of the isoprenoid precursors IPP and DMAPP from HMBPP, IspH catalysis is achieved via a 2e~/2H~= reductive dehydroxylation of HMBPP; the mechanism by which catalysis is achieved, however, is highly controversial. The work presented herein provides the first step in assessing different routes to catalysis by using computational methods. By performing broken-symmetry density functional theory (BS— DFT) calculations that employ both the conductor-like screening solvation model (DFT/COSMO) and a finite-difference Poisson—Boltzmann self-consistent reaction field methodology (DFT/SCRF), we evaluate geometries, energies, and Mossbauer signatures of the different protonation states that may exist in the oxidized state of the IspH catalytic cycle. From DFT/SCRF computations performed on the oxidized state, we find a state where the substrate, HMBPP, coordinates the apical iron in the [4Fe—4S] cluster as an alcohol group (ROH) to be one of two, isoenergetic, lowest-energy states. In this state, the HMBPP pyrophosphate moiety and an adjacent glutamate residue (E126) are both fully deprotonated, making the active site highly anionic. Our findings that this low-energy state also matches the experimental geometry of the active site and that its computed isomer shifts agree with experiment validate the use of the DFT/SCRF method to assess relative energies along the IspH reaction pathway. Additional studies of IspH catalytic intermediates are currently being pursued.
机译:由于当前的疗法由于增加的耐药性而变得无效,因此迫切需要细菌和疟疾靶标的新抑制剂。最近发现的用于类异戊二烯合成的甲基赤藓醇磷酸酯(MEP)途径为此类药物的开发提供了新的靶标。特别关注的是IspH蛋白,它是MEP途径中的最终酶,利用其[4Fe-4S]簇催化HMBPP形成类异戊二烯前体IPP和DMAPP,IspH催化通过2e〜/ 2H 〜= HMBPP的还原性脱羟基;然而,催化作用的机理是有争议的。本文介绍的工作提供了使用计算方法评估催化不同途径的第一步。通过执行采用对称导体筛查溶剂化模型(DFT / COSMO)和有限差分泊松-玻尔兹曼自洽反应场方法(DFT / SCRF)的破碎对称密度泛函理论(BS- DFT)计算,我们评估可能在IspH催化循环的氧化态中存在的不同质子化态的几何形状,能量和Mossbauer签名。通过对氧化态进行的DFT / SCRF计算,我们发现一种状态,其中底物HMBPP将[4Fe-4S]簇中的顶端铁与醇基(ROH)配位,是两个等能量的,最低的能量状态。在此状态下,HMBPP焦磷酸盐部分和相邻的谷氨酸残基(E126)均被完全去质子化,从而使活性位点高度阴离子化。我们的发现表明,这种低能态也与活性位点的实验几何形状相匹配,并且其计算出的异构体位移与实验相符,验证了DFT / SCRF方法用于评估IspH反应路径中相对能量的有效性。 IspH催化中间体的其他研究目前正在进行中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号