首页> 外文期刊>Journal of chemical theory and computation: JCTC >Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)_(16) and (H2O)_(17) to CCSD(T) Results
【24h】

Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)_(16) and (H2O)_(17) to CCSD(T) Results

机译:评估水纳米粒子的密度泛函和半经验波函数方法的准确性:比较(H2O)_(16)和(H2O)_(17)与CCSD(T)结果的结合能和相对能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The binding energies and relative conformational energies of five configurations of the water 16-mer are computed using 61 levels of density functional (DF) theory, 12 methods combining DF theory with molecular mechanics damped dispersion (DF-MM), seven semiempirical-wave function (SWF) methods, and five methods combining SWF theory with molecular mechanics damped dispersion (SWF-MM). The accuracies of the computed energies are assessed by comparing them to recent high-level ab initio results; this assessment is more relevant to bulk water than previous tests on small clusters because a 16-mer is large enough to have water molecules that participate in more than three hydrogen bonds. We find that for water 16-mer binding energies the best DF, DF-MM, SWF, and SWF-MM methods (and their mean unsigned errors in kcal/mol) are respectively M06-2X (1.6), ωB97X-D (2.3), SCC-DFTB-γ~h (35.2), and PM3-D (3.2). We also mention the good performance of CAM-B3LYP (1.8), M05-2X (1.9), and TPSSLYP (3.0). In contrast, for relative energies of various water nanoparticle 16-mer structures, the best methods (and mean unsigned errors in kcal/mol), in the same order of classes of methods, are SOGGA11-X (0.3), ωB97X-D (0.2), PM6 (0.4), and PMOv1 (0.6). We also mention the good performance of LC-ωPBE-D3 (0.3) and ωB97X (0.4). When both relative and binding energies are taken into consideration, the best methods overall (out of the 85 tested) are MO5-2X without molecular mechanics and ωB97X-D when molecular mechanics corrections are included; with considerably higher average errors and considerably lower cost, the best SWF or SWF-MM method is PMOvl. We use six of the best methods for binding energies of the water 16-mers to calculate the binding energies of water hexamers and water 17-mers to test whether these methods are also reliable for binding energy calculations on other types of water clusters.
机译:使用61级密度泛函理论(DF),12种将DF理论与分子力学阻尼分散(DF-MM)结合的方法,7种半经验波函数计算出16个单体的五种构型的结合能和相对构象能(SWF)方法,以及将SWF理论与分子力学阻尼分散(SWF-MM)结合的五种方法。通过将计算出的能量与最近的高水平从头算结果进行比较来评估计算出的能量的准确性。与以前在小型集群上进行的测试相比,该评估与散装水更相关,因为一个16聚体大得足以让水分子参与三个以上的氢键。我们发现,对于水的16-mer结合能,最佳的DF,DF-MM,SWF和SWF-MM方法(以及它们在kcal / mol中的平均无符号误差)分别为M06-2X(1.6),ωB97X-D(2.3 ),SCC-DFTB-γ〜h(35.2)和PM3-D(3.2)。我们还提到了CAM-B3LYP(1.8),M05-2X(1.9)和TPSSLYP(3.0)的良好性能。相反,对于各种水纳米粒子16-聚体结构的相对能量,最佳方法(以及kcal / mol的平均无符号误差),按相同方法类别的顺序,分别为SOGGA11-X(0.3),ωB97X-D( 0.2),PM6(0.4)和PMOv1(0.6)。我们还提到了LC-ωPBE-D3(0.3)和ωB97X(0.4)的良好性能。当同时考虑相对能和结合能时,最好的总体方法(在测试的85种方法中)是没有分子力学的MO5-2X和包括分子力学校正的ωB97X-D。由于平均错误率较高且成本较低,因此最好的SWF或SWF-MM方法是PMOvl。我们使用六种最佳方法来结合水16聚体的能量,以计算六聚体水和水17聚体的结合能,以测试这些方法对于其他类型水簇的结合能计算是否也可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号