首页> 外文期刊>Journal of chemical theory and computation: JCTC >Folding Kinetics and Unfolded State Dynamics of the GB1 Hairpin from Molecular Simulation
【24h】

Folding Kinetics and Unfolded State Dynamics of the GB1 Hairpin from Molecular Simulation

机译:GB1发夹的折叠动力学和未折叠状态动力学的分子模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The C-terminal β-hairpin of protein G is a 16-residue peptide that folds in a two-state fashion akin to many larger proteins. However, with an experimental folding time of ~6 μs, it remains a challenging system for all-atom, explicitly solvated, molecular dynamics simulations, Here, we use a large simulation data set (0.7 ms total) of the hairpin at 300 and 350 K to interpret its folding via a master equation approach. We find a separation of over an order of magnitude between the longest and second longest relaxation times, with the slowest relaxation corresponding to folding. However, in spite of this apparent two-state dynamics, the folding rate determined based on a first-passage time analysis depends on the initial conditions chosen, with a nonexponential distribution of first passage times being obtained in some cases. Using the master equation model, we are now able to account quantitatively for the observed distribution of first passage times. The deviation from the expected exponential distribution for a two-state system arises from slow dynamics in the unfolded state, associated with formation and melting of helical structures. Our results help to reconcile recent findings of slow dynamics in unfolded proteins with observed two-state folding kinetics. At the same time, they indicate that care is required in estimating folding kinetics from many short folding simulations. Last, we are able to use the master equation model to obtain details of the folding mechanism and folding transition state, which appear consistent with the "zipper" mechanism inferred from the experiment.
机译:蛋白G的C端β-发夹是16个残基的肽,类似于许多较大的蛋白,以两种状态折叠。但是,实验折叠时间约为6μs,对于全原子,明确溶剂化的分子动力学模拟,它仍然是一个具有挑战性的系统。在这里,我们使用300和350处发夹的大型模拟数据集(总计0.7 ms) K通过主方程方法解释其折叠。我们发现最长和第二个最长的弛豫时间之间相差一个数量级,而最慢的弛豫对应于折叠。但是,尽管具有这种明显的二态动力学,但基于首次通过时间分析确定的折叠速率取决于所选的初始条件,在某些情况下会获得一次通过时间的非指数分布。使用主方程模型,我们现在可以定量地计算首次通过时间的分布。与两态系统的预期指数分布的偏差是由于展开状态下的缓慢动力学引起的,这与螺旋结构的形成和熔化有关。我们的结果有助于使最近发现的未折叠蛋白质动力学缓慢与发现的两种状态的折叠动力学相一致。同时,他们指出在从许多短折叠模拟中估算折叠动力学时需要谨慎。最后,我们能够使用主方程模型来获取折叠机制和折叠过渡状态的细节,这些细节与实验推断的“拉链”机制相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号