首页> 外文期刊>Journal of chemical theory and computation: JCTC >Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals
【24h】

Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals

机译:可极化的原子多极X射线细化:大分子晶体的粒子网格Ewald静电

获取原文
获取原文并翻译 | 示例
           

摘要

Refinement of macromolecular models from X-ray crystallography experiments benefits from prior chemical knowledge at all resolutions. As the quality of the prior chemical knowledge from quantum or classical molecular physics improves, in principle so will resulting structural models. Due to limitations in computer performance and electrostatic algorithms, commonly used macromolecules X-ray crystallography refinement protocols have had limited support for rigorous molecular physics in the past. For example, electrostatics is often neglected in favor of nonbonded interactions based on a purely repulsive van der Waals potential. In this work we present advanced algorithms for desktop workstations that open the door to X-ray refinement of even the most challenging macromolecular data sets using state-of-the-art classical molecular physics. First we describe theory for particle mesh Ewald (PME) summation that consistently handles the symmetry of all 230 space groups, replicates of the unit cell such that the minimum image convention can be used with a real space cutoff of any size and the combination of space group symmetry with replicates. An implementation of symmetry accelerated PME for the polarizable atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field is presented. Relative to a single CPU core performing calculations on a PI unit cell, our AMOEBA engine called Force Field X (FFX) accelerates energy evaluations by more than a factor of 24 on an 8-core workstation with a Tesla GPU coprocessor for 30 structures that contain 240 000 atoms on average in the unit cell. The benefit of AMOEBA electrostatics evaluated with PME for macromolecular X-ray crystallography refinement is demonstrated via rerefine-ment of 10 crystallographic data sets that range in resolution from 1.7 to 4.5 A. Beginning from structures obtained by local optimization without electrostatics, further optimization using AMOEBA with PME electrostatics improved agreement of the model with the data (R_(free) wss lowered by 0.5%), improved geometric features such as favorable (φ, Ψ) backbone conformations, and lowered the average potential energy per residue by over 10 kcal/mol. Furthermore, the MolProbity structure validation tool indicates that the geometry of these rerefined structures is consistent with X-ray crystallographic data collected up to 2.2 A, which is 0.9 A better than the actual mean quality (3.1 A). We conclude that polarizable AMOEBA-assisted X-ray refinement offers advantages to methods that neglect electrostatics and is now efficient enough for routine use.
机译:从X射线晶体学实验中提炼大分子模型得益于所有分辨率的先验化学知识。随着来自量子或经典分子物理学的现有化学知识质量的提高,原则上将得到结构模型。由于计算机性能和静电算法的局限性,过去常用的大分子X射线晶体学细化方案对严格的分子物理学的支持有限。例如,基于纯斥力范德华电位,通常忽略静电,而倾向于非键相互作用。在这项工作中,我们介绍了用于台式工作站的高级算法,这些算法使用最先进的经典分子物理学技术,甚至可以对最具挑战性的大分子数据集进行X射线精修。首先,我们描述粒子网格埃瓦尔德(PME)求和的理论,该理论始终处理所有230个空间组的对称性,复制单位像元,以便最小图像约定可与任何大小的实际空间截止以及空间的组合一起使用组对称与重复。提出了一种对称极化加速PME的实现方法,该方法用于可极化的原子多极生物分子应用优化能量学(AMOEBA)力场。相对于在PI单位单元上执行计算的单个CPU内核,我们的AMOEBA引擎(称为Force Field X(FFX))在带有Tesla GPU协处理器的8核工作站上对30个包含以下结构的结构的能源评估速度提高了24倍以上晶胞中平均有24万个原子。通过对10个晶体学数据集(范围从1.7至4.5 A)进行细化,证明了用PME评估的AMOEBA静电对大分子X射线晶体学细化的好处。使用PME静电改善了模型与数据的一致性(R_(free)wss降低了0.5%),改进了几何特征(例如有利的(φ,Ψ)主链构象)并将每个残基的平均势能降低了10 kcal /摩尔此外,MolProbity结构验证工具表明,这些精制结构的几何形状与收集到的2.2 A的X射线晶体学数据一致,比实际平均质量(3.1 A)高0.9A。我们得出的结论是,可极化的AMOEBA辅助X射线细化为忽略静电的方法提供了优势,并且对于常规使用而言已经足够有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号