首页> 美国卫生研究院文献>Acta Crystallographica Section D: Biological Crystallography >Polarizable atomic multipole X-ray refinement: application to peptide crystals
【2h】

Polarizable atomic multipole X-ray refinement: application to peptide crystals

机译:可极化原子多极X射线细化:应用于肽晶体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussian multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of inter­atomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R free by 20–40% relative to the original spherically symmetric scattering model.
机译:计算化学的最新进展已经基于生物分子静电的可极化原子多极描述产生了力场。在这项工作中,适用于生物分子应用的原子多极优化能量学(AMOEBA)力场被用于限制分子模型针对肽晶体的X射线衍射数据的精细化。还开发了一种新的形式主义,以使用笛卡尔高斯多极点的快速傅立叶变换(FFT)计算各向异性和非球面结构因子。相对于直接求和,FFT方法可以为超高分辨率数据集的非球面优化提供超过一个数量级的加速。使用子格形式主义使该方法高度可并行化。利用来自AMOEBA力场的多极系数,将笛卡尔高斯多极散射模型应用于一系列四个肽晶体,证明AMOEBA系统地低估了键中心的电子密度。对于有机化学中常见的三角和四面体键合几何形状,需要通过十六极级的原子多极膨胀来解释键合电子密度。或者,在基于AMOEBA的密度上添加原子间散射(IAS)位置可以用较少的参数捕获键合效应。对于一系列四个肽晶体,相对于原始的球形对称散射模型,AMOEBA-IAS模型将游离R降低了20-40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号