首页> 外文期刊>Journal of chemical theory and computation: JCTC >Using Theory to Reconcile Experiment: The Structural and Thermodynamic Basis of Ligand Recognition by Phenylethanolamine N-Methyltransferase (PNMT)
【24h】

Using Theory to Reconcile Experiment: The Structural and Thermodynamic Basis of Ligand Recognition by Phenylethanolamine N-Methyltransferase (PNMT)

机译:用理论调和实验:苯乙醇胺N-甲基转移酶(PNMT)识别配体的结构和热力学基础

获取原文
获取原文并翻译 | 示例
           

摘要

A fundamental challenge in computational drug design is the availability of reliable and validated experimental binding andstructural data against which theoretical calculations can be compared. In this work a combination of molecular dynamics (MD)simulations and free energy calculations has been used to analyze the structural and thermodynamic basis of ligandrecognition by phenylethanolamine N-methyltransferase (PNMT) in an attempt to resolve uncertainties in the available bindingand structural data. PNMT catalyzes the conversion of norepinephrine into epinephrine (adrenaline), and inhibitors of PNMTare of potential therapeutic importance in Alzheimer's and Parkinson's disease. Excellent agreement between the calculatedand recently revised relative binding free energies to human PNMT was obtained with the average deviation between thecalculated and the experimentally determined values being only 0.8 kJ/mol. In this case, the variation in the experimentaldata over time is much greater than the uncertainties in the theoretical estimates. The calculations have also enabled therefinement of structure-activity relationships in this system, to understand the basis of enantiomeric selectivity ofsubstitution at position three of tetrahydroisoquinoline and to identify the role of specific structural waters. Finally, thecalculations suggest that the preferred binding mode of trans-(1S,2S)-2-amino-1-tetralol is similar to that of its epimercis-(1R,2S)-2-amino-1-tetralol and that the ligand does not adopt the novel binding mode proposed in the pdb entry 2ANS. Thework demonstrates how MD simulations and free energy calculations can be used to resolve uncertainties in experimentalbinding affinities, binding modes, and other aspects related to X-ray refinement and computational drug design.
机译:计算药物设计中的一个基本挑战是可获得可靠且经过验证的实验结合和结构数据,可以将其与理论计算进行比较。在这项工作中,结合了分子动力学(MD)模拟和自由能计算,以分析苯基乙醇胺N-甲基转移酶(PNMT)识别配体的结构和热力学基础,以试图解决可用结合和结构数据中的不确定性。 PNMT催化去甲肾上腺素向肾上腺素(肾上腺素)的转化,而PNMT抑制剂在阿尔茨海默氏病和帕金森氏病中具有潜在的治疗重要性。获得了与人PNMT的计算和最近修订的相对结合自由能之间的极佳一致性,计算值与实验确定值之间的平均偏差仅为0.8 kJ / mol。在这种情况下,实验数据随时间的变化远大于理论估计中的不确定性。该计算还使该体系中结构-活性关系得以完善,以了解四氢异喹啉三位取代的对映体选择性的基础,并确定特定结构水的作用。最后,计算结果表明反式-(1S,2S)-2-氨基-1-四醇的优选结合方式与其差向异构体-(1R,2S)-2-氨基-1-四醇的结合方式和配体相似。不采用pdb条目2ANS中提出的新颖绑定模式。这项工作演示了如何使用MD模拟和自由能计算来解决实验性结合亲和力,结合模式以及与X射线精细化和药物设计有关的其他方面的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号