...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics
【24h】

Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics

机译:基于基于密度泛函理论的分子动力学的金红石型TiO2(110)水溶液的酸度

获取原文
获取原文并翻译 | 示例
           

摘要

The thermodynamics of protonation and deprotonation of the rutile TiO2(110) water interface is studied using a combination of density functional theory based molecular dynamics (DFTMD) and free energy perturbation methods. Acidity constants are computed from the free energy for chaperone assisted insertion/removal of protons in fully atomistic periodic model systems treating the solid and solvent at the same level of theory. The pK_a values we find for the two active surface hydroxyl groups on TiO2(110), the bridge OH (Ti2OH~+), and terminal H2O adsorbed on a 5-fold Ti site (TiOH2) are -1 and 9, leading to a point of zero proton charge of 4, well within the computational error margin (2 pK_a units) from the experimental value (4.5-5.5). The computed intrinsic surface acidities have also been used to estimate the dissociation free energy of adsorbed water giving 0.6 eV, suggesting that water dissociation is unlikely on a perfect aqueous TiO2(110) surface. For further analysis, we compare to the predictions of the MUltiSlte Complexation (MUSIC) and Solvation, Bond strength, and Electrostatic (SBE) models. The conclusion regarding the MUSIC model is that, while there is good agreement for the acidity of an adsorbed water molecule, the proton affinity of the bridging oxygen obtained in the DFTMD calculation is significantly lower (more than 5 pK_a units) than the MUSIC model value. Structural analysis shows that there are significant differences in hydrogen bonding, in particular to a bridging oxygen which is assumed to be stronger in the MUSIC model compared to what we find using DFTMD. Using DFTMD coordination numbers as input for the MUSIC model, however, led to a pK_a prediction which is inconsistent with the estimates obtained from the DFTMD free energy calculation.
机译:结合使用基于密度泛函理论的分子动力学(DFTMD)和自由能摄动方法,研究了金红石型TiO2(110)水界面的质子化和去质子化的热力学。酸度常数是从在相同理论水平下处理固体和溶剂的完全原子周期模型系统中,由分子伴侣进行质子的伴侣辅助插入/去除的自由能计算得出的。我们发现TiO2(110)上的两个活性表面羟基,桥OH(Ti2OH〜+)和吸附在5倍Ti位(TiOH2)上的末端H2O的pK_a值分别为-1和9,导致零质子电荷为4的点,完全在实验值(4.5-5.5)的计算误差容限(2 pK_a单位)内。计算得出的固有表面酸度也已用于估算吸附水的解离自由能,给出0.6 eV,这表明水在理想的TiO2(110)水溶液表面上不可能解离。为了进行进一步的分析,我们将与MUltiSlte络合(MUSIC)和溶剂化,结合强度和静电(SBE)模型的预测进行比较。关于MUSIC模型的结论是,尽管对于吸附的水分子的酸度有很好的一致性,但是在DFTMD计算中获得的桥接氧的质子亲和力明显低于MUSIC模型值(大于5 pK_a单位) 。结构分析表明,氢键存在显着差异,尤其是与氧桥键相比,MUSIC模型中的氧桥键与我们使用DFTMD所发现的氧键桥相比存在较强的差异。但是,使用DFTMD协调数作为MUSIC模型的输入会导致pK_a预测,这与从DFTMD自由能计算获得的估计值不一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号