首页> 外文期刊>Journal of chemical theory and computation: JCTC >Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling
【24h】

Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling

机译:模拟回火分布式副本采样,虚拟副本交换以及其他用于构象采样的通用集合方法

获取原文
获取原文并翻译 | 示例
       

摘要

Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energehc barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorrthms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion and we show that these definitions of efficiency are in fact correlated. Importantly we find thai ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.
机译:温度空间中的广义集成算法已成为在生物分子模拟中增强构象采样的流行工具。温度的随机游走会导致相应的势能随机游走,可用于越过能垒并克服准非遍历性问题。在本文中,我们介绍了两种新颖的方法:模拟回火分布式副本采样(STDR)和虚拟副本交换(VREX)。这些方法旨在解决副本交换(RE),模拟回火(ST)和串行副本交换(SREM)算法固有的实际问题。 RE应用于大型系统时,需要大型,专用且同质的CPU集群才能有效运行。 ST和SREM都具有需要进行大量初始模拟(可能是自适应模拟)以计算权重因子或势能分布函数的缺点。 STDR和VREX减少了冗长的初始仿真以及副本之间的同步和广泛通信的需求。因此,这两种方法均适用于分布式或异构计算平台。我们在实现问题和采样效率方面对所有五种算法进行了客观比较。我们在显性水中使用无序肽作为测试系统,总仿真时间超过42μs。效率是根据结构收敛性和温度扩散来定义的,我们证明效率的这些定义实际上是相关的。重要的是,与基于RE的方法相比,我们发现基于ST的方法表现出更快的温度扩散和相应更快的结构特性收敛。在基于RE的方法中,VREX优于SREM和RE。根据我们的观察,我们得出结论:ST非常适合简单系统,而STDR非常适合复杂系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号