首页> 外文期刊>Journal of chemical theory and computation: JCTC >Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics
【24h】

Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics

机译:我们可以准确地描述B-DNA中腺嘌呤道的结构吗?参考量子化学计算揭示了分子力学对堆叠的过度稳定作用

获取原文
获取原文并翻译 | 示例
           

摘要

Sequence-dependent local variations of helical parameters, structure, and flexibility are crucial for molecular recognition processes involving B-DNA A-tracts, i.e., stretches of several consecutive adenines in one strand that are in phase with the DNA helical repeat, mediate significant 0NA bending. During the past few decades, there have been intense efforts to understand the sequence dependence of helical parameters in DNA Molecular dynamics (MD) simulations can provide valuable insights into the molecular mechanism behind the relationship between sequence and structure. However, although recent improvements in empirical force fields have helped to capture many sequence-dependent B-DNA properties, several problems remain, such as underestimation of the helical twist and suspected underestimation of the propeller twist in A-tracts. Here, we employ reference quantum mechanical (QM) calculations, explicit solvent MD, and bioinformatics to analyze the underestimation of propeller twisting of A-tracts in simulations. Although we did not identify a straightforward explanation, we discovered two imbalances in the empirical force fields. The first was overestimation of stacking interactions accompanied by underestimation of base-pairing energy, which we attribute to anisotropic polarizabilities that are not reflected by the isotropic force fields. This may lead to overstacking with potentially important consequences for MD simulations of nucleic acids. The second observed imbalance was steric clash between A(Nl) and T(N3) nitrogens of AT base pairs in force-field descriptions, resulting in overestimation of the AT pair stretch in MD simulations. We also substantially extend the available set of benchmark estimated CCSD(T)/CBS data for B-DNA base stacking and provide a code that allows the generation of diverse base-stacking geometries suitable for QM computations with predefined intra- and interbase pair parameters.
机译:螺旋参数,结构和柔性的序列依赖性局部变异对于涉及B-DNA A链的分子识别过程至关重要,即与DNA螺旋重复序列同相的一条链中多个连续腺嘌呤的延伸介导了显着的0NA弯曲。在过去的几十年中,人们一直在努力理解DNA中螺旋参数的序列依赖性。分子动力学(MD)模拟可以提供有关序列和结构之间关系背后的分子机制的宝贵见解。然而,尽管最近在经验力场上的改进已经帮助捕获了许多依赖序列的B-DNA特性,但是仍然存在一些问题,例如低估了螺旋扭曲,并怀疑低估了A轴中的螺旋桨扭曲。在这里,我们采用参考量子力学(QM)计算,显式溶剂MD和生物信息学来分析模拟中A轴螺旋桨扭曲的低估。尽管我们没有找到简单的解释,但是我们发现了经验力场中的两个失衡。首先是高估堆积相互作用,同时低估了碱基配对能量,这归因于各向同性力场未反映的各向异性极化率。这可能导致过度堆积,对核酸的MD模拟可能具有重要的后果。观察到的第二个不平衡是在力场描述中AT碱基对的A(N1)和T(N3)氮原子之间的空间碰撞,导致在MD模拟中高估了AT对的伸展。我们还充分扩展了B-DNA碱基堆叠的基准估计CCSD(T)/ CBS数据的可用集合,并提供了一个代码,该代码允许生成适用于具有预定义的碱基对和碱基对对参数的QM计算的多样的碱基堆叠几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号