...
首页> 外文期刊>Journal of cardiovascular electrophysiology >Molecular control of cardiac sodium homeostasis in health and disease.
【24h】

Molecular control of cardiac sodium homeostasis in health and disease.

机译:心脏钠稳态在健康和疾病中的分子控制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

INTRODUCTION: Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS: Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS: Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.
机译:简介:心肌细胞利用三种高容量的Na转运过程,其精确功能可确定病理情况下心肌细胞的命运和心律不齐的触发。我们目前对所有三种转运蛋白的调节的最新结果,这可能对于了解缺血/再灌注发作期间的心脏功能很重要。方法和结果:使用精制离子选择电极(ISE)技术和巨型贴片方法分析了心脏Na / K泵,Na / Ca交换(NCX1)和Na / H交换(NHE1)在切除的心脏斑块中的功能。完整的心肌细胞。为了连贯地考虑结果,开发了模拟,其考虑了细胞质的电中性,离子稳态,水稳态(即细胞体积)和细胞质pH。 Na / K泵确定细胞质中Na离子(3-10分钟)以及K离子(> 30分钟)的平均寿命。钾动态平衡的长时间过程可以确定离子动态平衡后心肌细胞体积变化的时间过程。在切除的贴片中,首次激活时,心脏Na / K泵会以毫摩尔ATP依赖性缓慢打开(-30秒)。但是,在稳定状态下,泵在ATP小于0.2 mM的情况下完全处于活动状态,并且几乎不受缺血中可能发生的高ADP(2 mM)和Pi(10 mM)浓度的影响。 NCX1似乎在滑动时起作用,从而导致背景Na流入和心脏内向电流。因此,肌细胞Na水平可以通过交换剂的Na和质子依赖的失活反应来调节。 NHE1还经历了强烈的Na依赖性失活,因此细胞质Na的短暂升高会导致失活,这种失活会在去除细胞质Na后持续数分钟。百日咳毒素会阻断这种机制,提示存在钠依赖性G蛋白。鉴于最大的NCX1和NHE1介导的离子通量远大于最大Na / K泵介导的心肌细胞Na挤出,NCX1和NHE1依赖于Na的失活机制可能是心脏Na稳态的重要决定因素。结论:Na / K泵似乎经过优化,可以在能量储备受到影响时继续运行。 NCX1和NHE1活性均受细胞质Na积累的调节。这些原则可能重要地控制心肌细胞质中的Na,并通过防止Ca超负荷来促进缺血/再灌注发作期间的心肌细胞存活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号