...
首页> 外文期刊>Journal of Biomolecular Structure and Dynamics >Molecular Dynamics Simulations on Pars Intercerebralis Major Peptide-C (PMP-C) Reveal the Role of Glycosylation and Disulfide Bonds in its Enhanced Structural Stability and Function.
【24h】

Molecular Dynamics Simulations on Pars Intercerebralis Major Peptide-C (PMP-C) Reveal the Role of Glycosylation and Disulfide Bonds in its Enhanced Structural Stability and Function.

机译:Pars脑内主要肽C(PMP-C)的分子动力学模拟揭示了糖基化和二硫键在增强的结构稳定性和功能中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Fucosylation of Thr 9 in pars intercerebralis major peptide-C (PMP-C) enhances its structural stability and functional ability as a serine protease inhibitor. In order to understand the role of disulfide bonds and glycosylation on the structure and function of PMP-C, we have carried out multiple explicit solvent molecular dynamics (MD) simulations on fucosylated and non-fucosylated forms of PMP-C, both in the presence and absence of the disulfide bonds. Our simulations revealed that there were no significant structural changes in the native disulfide bonded forms of PMP-C due to fucosylation. On the other hand, the non-fucosylated form of PMP-C without disulfide bonds showed larger deviations from the starting structure than the fucosylated form. However, the structural deviations were restricted to the terminal regions while core β-sheet retained its hydrogen bonded structure even in absence of disulfide bonds as well as fucosylation. Interestingly, fucosylation of disulfide bonded native PMP-C led to a decreased thermal flexibility in the residue stretch 29-32 which is known to interact with the active site of the target proteases. Our analysis revealed that disulfide bonds covalently connect the residue stretch 29-32 to the central β-sheet of PMP-C and using a novel network of side chain interactions and disulfide bonds fucosylation at Thr 9 is altering the flexibility of the stretch 29-32 located at a distal site. Thus, our simulations explain for the first time, how presence of disulfide bonds between conserved cysteines and fucosylation enhance the function of PMP-C as a protease inhibitor.
机译:Pars脑内主要肽C(PMP-C)中Thr 9的岩藻糖基化增强了其结构稳定性和作为丝氨酸蛋白酶抑制剂的功能。为了了解二硫键和糖基化对PMP-C的结构和功能的作用,我们对存在的岩藻糖基化和非岩藻糖基化形式的PMP-C进行了多个显式溶剂分子动力学(MD)模拟没有二硫键。我们的模拟显示,由于岩藻糖基化,PMP-C的天然二硫键形式没有明显的结构变化。另一方面,不具有二硫键的PMP-C的非岩藻糖基化形式与岩藻糖基化形式相比,与起始结构的偏差更大。然而,结构偏差被限制在末端区域,而核心β-折叠即使在没有二硫键以及岩藻糖基化的情况下仍保持其氢键结构。有趣的是,二硫键结合的天然PMP-C的岩藻糖基化导致残基序列29-32中的热柔韧性降低,已知其与靶蛋白酶的活性位点相互作用。我们的分析表明,二硫键将残基29-32共价连接至PMP-C的中央β-折叠,并使用新型的侧链相互作用网络和Thr 9处的二硫键岩藻糖基化改变了29-32残基的柔性位于远端部位。因此,我们的模拟首次解释了保守半胱氨酸和岩藻糖基化之间二硫键的存在如何增强PMP-C作为蛋白酶抑制剂的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号