...
首页> 外文期刊>Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research >Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content
【24h】

Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content

机译:不同矿物质含量的单个胶原原纤维的大变形机制,可塑性和破坏

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness. (c) 2015 American Society for Bone and Mineral Research.
机译:矿化的胶原原纤维由原胶原蛋白分子和源自羟基磷灰石的矿物晶体组成,形成一种复合材料,该材料结合了两种成分的最佳性能,并表现出令人难以置信的强度和韧性。它们复杂的层次结构使胶原蛋白原纤维能够承受较大的变形而不会断裂。在这项研究中,我们报告了使用自下而上方法的单个矿化胶原纤维的中尺度模型。通过保留三维结构和分子的缠结,我们能够构建有限尺寸的原纤维模型,从而使我们能够探索控制大变形下其力学行为的变形机制。我们研究了具有各种原纤维内矿物质含量的单个胶原原纤维的拉伸行为,发现矿化的胶原原纤维最多可以存在五种不同的变形机制来耗散能量。这些机制包括分子解开,分子拉伸,矿物/胶原蛋白滑动,分子滑动和晶体解离。通过增加其能量耗散和变形机制的来源,胶原蛋白原纤维可以达到令人印象深刻的强度和韧性。在胶原蛋白原纤维中添加矿物质可以使其强度提高10倍,而韧性则提高35倍。将交联剂与矿物结合在一起会使原纤维变硬但变脆。我们还发现,矿化的原纤维达到约30%的最大密度韧性和强度密度比。该结果与实验观察结果非常吻合,证明了对骨组织进行了机械优化,以保持重量轻但保持强度和韧性。 (c)2015年美国骨与矿物质研究学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号