...
首页> 外文期刊>Journal of biomedical materials research, Part A >Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
【24h】

Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.

机译:在纳米晶羟基磷灰石颗粒上涂覆纳米厚度可降解膜,以提高纳米羟基磷灰石与可降解聚合物基体之间的结合强度。

获取原文
获取原文并翻译 | 示例
           

摘要

Hydroxyapatite (HA) nanoparticles are similar to bone apatite in size, phase composition, and crystal structure. When compared with micron-size HA particles, nano-HA possesses improved mechanical properties and superior bioactivity for promoting bone growth and regeneration. However, scaffolds fabricated from nano-HA alone cannot meet the mechanical requirements for direct-loading applications. A number of studies suggest that nanostructured composites may offer surface and/or chemical properties of native bone, and therefore represent ideal substrates to support bone regeneration. However, a common problem with nanohydroxyapatite (nano-HA)-polymer composites is the weak binding strength between the nano-HA filler and the polymer matrix since they are two different categories of materials and cannot form covalent bonds between them during the mixing process. Often, the mechanical strength of the composite is compromised due to the phase separation of the HA filler from the polymer matrix during the tissue repair process. To overcome this problem, an ultrathin degradable polymer film was grafted onto the surface of nano-HA using a radio-frequency plasma polymerization technology from acrylic acid monomers. The treated nano-HA powders are expected to bind to the polymer matrix via covalent bonds, thus enhancing the mechanical properties of the resultant composites. High-resolution transmission electron microscopy (HRTEM) experiments showed that an extremely thin polymer film (2 nm) was uniformly deposited on the surfaces of the nanoparticles. The HRTEM results were confirmed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOFSIMS). Tensile tests performed on the specimens revealed that the degradable coating had improved elastic and strength properties when compared with the nondegradable and uncoated controls. XPS and TOSIMS data revealed that more functional carboxyl groups were formed on degradable coatings than cross-linked nondegradable coatings. Cytocompatibility assay demonstrated that both the degradable and nondegradable coatings are cytocompatible.
机译:羟基磷灰石(HA)纳米粒子的大小,相组成和晶体结构与骨磷灰石相似。与微米级HA颗粒相比,纳米HA具有改善的机械性能和出色的生物活性,可促进骨骼生长和再生。但是,仅由纳米HA制造的支架不能满足直接装载应用的机械要求。大量研究表明,纳米结构复合材料可以提供天然骨骼的表面和/或化学特性,因此代表了支持骨骼再生的理想基质。然而,纳米羟基磷灰石(nano-HA)-聚合物复合材料的常见问题是纳米-HA填料和聚合物基质之间的弱结合强度,因为它们是两种不同类型的材料,并且在混合过程中不能在它们之间形成共价键。通常,由于在组织修复过程中HA填料与聚合物基体发生相分离,因此会降低复合材料的机械强度。为了克服该问题,使用了来自丙烯酸单体的射频等离子体聚合技术,将超薄可降解聚合物膜接枝到了纳米HA的表面上。期望处理后的纳米HA粉末通过共价键结合到聚合物基质上,从而增强所得复合材料的机械性能。高分辨率透射电子显微镜(HRTEM)实验表明,极薄的聚合物膜(2 nm)均匀地沉积在纳米颗粒的表面上。通过X射线光电子能谱(XPS)和飞行时间二次离子质谱(TOFSIMS)证实了HRTEM结果。对样品进行的拉伸试验表明,与不可降解和未涂覆的对照组相比,可降解涂层的弹性和强度性能得到了改善。 XPS和TOSIMS数据表明,与交联的不可降解涂料相比,可降解涂料上形成的官能团羧基更多。细胞相容性分析表明,可降解和不可降解的涂层均具有细胞相容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号