首页> 外文期刊>Journal of biomedical materials research, Part A >Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro.
【24h】

Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro.

机译:细丝直径和细胞外基质分子预涂对体外复丝插管桥接装置对神经突生长和雪旺细胞行为的影响。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

At present there is no clinically effective treatment for injuries or pathological processes that disrupt the continuity of axons in the mature central nervous system. However, a number of studies suggest that a tremendous potential exists for developing biomaterial based therapies. In particular, biomaterials in the form of bridging substrates have been shown to support at least some level of axonal regeneration across the lesion site, but display a limited capacity for directing axons toward their targets. To improve the directionality and outgrowth rate of the axonal regeneration process, filaments and tubes appear promising, but the technology is far from optimized. As a step toward optimization, the influence of filament diameter and various extracellular matrix coatings on nerve regeneration was evaluated in this article using a dorsal root ganglion (DRG) explant model. An increasing pattern of alignment and outgrowth of neurites in the direction parallel the long axis of the packed filament bundles with decreasing filament diameters ranging from supracellular and beyond (500 to 100 mum), cellular (30 mum), down to subcellular size (5 mum) was observed. Such effects became most prominent on filament bundles with individual filament diameters in the range of cellular size and below (5 and 30 mum) where highly directional and robust neuronal outgrowth was achieved. In addition, laminin-coated filaments that approached the size of spinal axons support significantly longer regenerative outgrowth than similarly treated filaments of larger diameter, and exceed outgrowth distance on similarly sized filaments treated with fibronectin. These data suggested the feasibility of using a multifilament entubulation bridging device for supporting directional axonal regeneration.
机译:目前,尚没有针对破坏中枢神经系统中轴突连续性的损伤或病理过程的临床有效疗法。但是,许多研究表明,开发基于生物材料的疗法存在巨大潜力。特别地,已经显示了桥接基质形式的生物材料支持穿过病变部位的至少一定水平的轴突再生,但是将轴突导向其靶标的能力有限。为了改善轴突再生过程的方向性和生长速率,长丝和管子看起来很有前途,但是该技术远未达到最佳化。作为优化的一步,本文使用背根神经节(DRG)外植体模型评估了细丝直径和各种细胞外基质涂层对神经再生的影响。在平行于堆积的长丝束长轴的方向上,神经突排列和长出的模式不断增加,长丝直径的减小范围从细胞上到细胞外(500到100微米),细胞(30微米)到亚细胞大小(5微米) ) 被观测到。这种效果在单个细丝直径在细胞大小范围内(小于5和30微米)的细丝束中最为突出,在细丝束中实现了高度定向和稳健的神经元增生。另外,与脊柱轴突大小接近的层粘连蛋白包被的细丝支持的再生生长比直径较大的相似处理的细丝长得多,并且在用纤连蛋白处理的相似尺寸的细丝上超过了生长距离。这些数据表明使用多丝插管桥接装置支持定向轴突再生的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号