首页> 外文期刊>Journal of biomedical materials research, Part A >Complexity in Modeling of Residual Stresses and Strains During Polymerization of Bone Cement: Effects of Conversion, Constraint, Heat Transfer, and Viscoelastic Property Changes
【24h】

Complexity in Modeling of Residual Stresses and Strains During Polymerization of Bone Cement: Effects of Conversion, Constraint, Heat Transfer, and Viscoelastic Property Changes

机译:骨水泥聚合过程中残余应力和应变建模的复杂性:转化,约束,传热和粘弹性特性变化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.
机译:在骨科生物材料中,胶合关节假体的无菌松动仍然是一个重大问题。水泥松动的一种可能原因是由于水泥的原位聚合而导致的孔隙率,残余应力和水泥局部破裂的发展。丙烯酸骨水泥的原位聚合是一系列复杂的相互作用过程,涉及聚合反应,热量产生和传递,全部或部分机械约束,依赖于转化和温度的粘弹性材料性能的演变以及受热和转化驱动的变化在水泥的密度。传热和聚合反应之间的相互作用会导致聚合反应前沿穿过材料。在存在机械约束的情况下,聚合过程中的密度变化会导致局部高残余应变能和残余应力的产生。这项研究模拟了骨水泥聚合过程中的相互作用,并确定了水泥中残余应力的发展方式,并结合了温度和转化相关的粘弹性行为。结果表明,骨水泥中聚合前沿的存在会导致局部较高的残余应变能。提出了一种新颖的遗传积分方法,以跟踪结合了转化率和温度依赖性材料特性变化的残余应力。最后,评估了热应变和转换相关应变对残余应力的相对贡献,发现基于转换的应变是整体行为的主要贡献者。该框架为理解残余应力的复杂发展提供了基础,并可作为开发水泥行为的更复杂模型的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号