首页> 外文期刊>Journal of Biomechanics >Prior storage conditions and loading rate affect the in vitro fracture response of spinal segments under impact loading.
【24h】

Prior storage conditions and loading rate affect the in vitro fracture response of spinal segments under impact loading.

机译:先前的存储条件和加载速率会影响冲击加载下脊柱节段的体外骨折反应。

获取原文
获取原文并翻译 | 示例
           

摘要

Traumatic injuries of the spine are mostly the consequence of rapid overload e.g. impact loading. In vitro investigations on this topic usually encompass biomechanical testing using frozen/thawed specimens and employ quasi-static loading conditions. It is generally accepted that a freezing/thawing cycle does not alter mechanical properties for slow loading rates. However, this has never been investigated for high impact velocities. In order to assess the effects of freezing/thawing and the influence of different impact velocities, we loaded 27 fresh and 15 frozen/thawed cadaveric rabbit spinal segments (intervertebral disc with one third of the adjacent vertebrae) with different impact energies and velocities using a custom-made, dropped-weight loading device. Endplate fractures were assessed by micro-CT scans. Specimen dimensions (disk, bone, and total height) and vertebrae bone density (BV/TV) were compared pre- and post-trauma. Energy absorption by spinal segments was quantified by measuring the initial ball rebound. We found that freezing/thawing increased endplate fracture frequency and decreased the energy absorption of the segments. Higher impact velocities increased the energy absorption, while higher impact energy increased both energy absorption and fracture frequency. Two conclusions are drawn: first, under impact loading, freezing alters permanently the biomechanical response, and second, for different impact velocities, different fracture initiation mechanisms apply. Therefore, quasi-static loading of frozen/thawed spinal segments is not a valid model for traumatic endplate injuries. However, caution should be exercised in extrapolating these findings to human vertebrae until tests on larger vertebrae are performed.
机译:脊柱外伤主要是快速超负荷的结果,例如冲击负荷。关于此主题的体外研究通常包括使用冷冻/解冻的标本并采用准静态加载条件进行的生物力学测试。通常接受的是,冷冻/解冻循环不会改变机械性能,从而降低加载速度。但是,从未针对高冲击速度进行过研究。为了评估冷冻/解冻的影响以及不同冲击速度的影响,我们使用了不同的冲击能量和速度,加载了27个新鲜和15个冷冻/解冻的尸体兔脊椎节段(椎间盘,相邻椎骨的三分之一),它们具有不同的冲击能量和速度。定制的失重式装载设备。通过micro-CT扫描评估终板骨折。比较创伤前后的标本尺寸(椎间盘,骨骼和总高度)和椎骨密度(BV / TV)。脊柱节段的能量吸收通过测量初始球的反弹来量化。我们发现冻结/解冻增加了端板的断裂频率,并降低了段的能量吸收。较高的冲击速度增加了能量吸收,而较高的冲击能量增加了能量吸收和断裂频率。得出两个结论:首先,在冲击载荷下,冻结永久改变了生物力学响应;其次,对于不同的冲击速度,采用了不同的断裂起始机制。因此,冷冻/融化的脊柱节段的准静态载荷不是创伤性终板损伤的有效模型。但是,在对大椎骨进行测试之前,应谨慎将这些发现推算到人类椎骨上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号