首页> 外文期刊>Journal of Biomechanics >Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
【24h】

Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.

机译:糖胺聚糖网络的几何形状可能有助于压缩状态下软骨的各向异性水渗透性。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Resistance to fluid flow within cartilage extracellular matrix is provided primarily by a dense network of rod-like glycosaminoglycans (GAGs). If the geometrical organization of this network is random, the hydraulic permeability tensor of cartilage is expected to be isotropic. However, experimental data have suggested that hydraulic permeability may become anisotropic when the matrix is mechanically compressed, contributing to cartilage biomechanical functions such as lubrication. We hypothesized that this may be due to preferred GAG rod orientations and directionally-dependent reduction of inter-GAG spacings which reflect molecular responses to tissue deformations. To examine this hypothesis, we developed a model for effects of compression which allows the GAG rod network to deform consistently with tissue-scale deformations but while still respecting limitations imposed by molecular structure. This network deformation model was combined with a perturbation analysis of a classical analytical model for hydraulic permeability based on molecular structure. Finite element analyses were undertaken to ensure that this approach exhibited results similar to those emerging from more exact calculations. Model predictions for effects of uniaxial confined compression on the hydraulic permeability tensor were consistent with previous experimental results. Permeability decreased more rapidly in the direction perpendicular to compression than in the parallel direction, for matrix solid volume fractions associated with fluid transport in articular cartilage. GAG network deformations may therefore introduce anisotropy to the permeability (and other GAG-associated matrix properties) as physiological compression is applied, and play an important role in cartilage lubrication and other biomechanical functions.
机译:软骨细胞外基质内流体流动的阻力主要由杆状糖胺聚糖(GAG)的密集网络提供。如果该网络的几何组织是随机的,那么软骨的水力渗透张量将是各向同性的。但是,实验数据表明,当基质被机械压缩时,水力渗透性可能会变得各向异性,从而有助于软骨生物力学功能(例如润滑)。我们假设这可能是由于优选的GAG杆取向和GAG间间距的方向依赖性减少所致,反映了对组织变形的分子反应。为了检验这一假设,我们开发了压缩效应模型,该模型允许GAG棒状网络与组织尺度的变形一致地变形,但同时仍要考虑到分子结构所施加的限制。该网络变形模型与基于分子结构的水力渗透性经典分析模型的摄动分析相结合。进行了有限元分析,以确保该方法所显示的结果与通过更精确的计算得出的结果相似。单轴约束压缩对渗透率张量影响的模型预测与先前的实验结果一致。对于与关节软骨中的流体运输有关的基质固体体积分数,在垂直于压缩方向的渗透率下降的速度快于在平行方向上的渗透率的下降速度。因此,当应用生理压缩时,GAG网络变形可能会向渗透率(以及其他与GAG相关的基质特性)引入各向异性,并且在软骨润滑和其他生物力学功能中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号