首页> 外文期刊>Journal of Biomechanics >Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds
【24h】

Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds

机译:通过多层间充质干细胞接种的纳米纤维支架工程半月板的结构和功能

获取原文
获取原文并翻译 | 示例
           

摘要

Despite complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(e-caprolactone) with fibers aligned in a single direction (0 degrees or 90 degrees to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0 degrees/0 degrees/0 degrees, 90 degrees/90 degrees/90 degrees, 0 degrees/90 degrees/0 degrees, 90 degrees/0 degrees/90 degrees, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0 degrees and C single layer constructs had stiffness values several fold higher than 90 degrees constructs. For multi-layer groups, the stiffness of 0 degrees/0 degrees/0 degrees constructs was higher than all other groups, while 90 degrees/90 degrees/90 degrees constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function. (C) 2015 Elsevier Ltd. All rights reserved.
机译:尽管天然组织具有复杂的宏观和微观结构特征,包括对机械功能必不可少的周向和径向排列的胶原束。为了模拟这种结构层次,本研究开发了多层间充质干细胞(MSC)接种的纳米纤维构建体。将牛MSCs接种到由聚(ε-己内酯)组成的纳米纤维支架上,该支架的纤维沿单方向(与支架长轴成0度或90度)排列或沿周向排列(C)。创建了多层组(0度/ 0度/ 0度,90度/ 90度/ 90度,0度/ 90度/ 0度,90度/ 0度/ 90度和C / C / C)并在有利于纤维软骨组织形成的条件下培养总共6周。拉伸测试表明,0度和C单层构造的刚度值比90度构造高几倍。对于多层组,0度/ 0度/ 0度构造的刚度高于所有其他组,而90度/ 90度/ 90度构造的刚度最低。胶原蛋白含量的数据显示,相对于单层结构,多层材料通常具有积极的交互作用,而C / C / C组仅发现刚性的积极交互作用。胶原含量和细胞浸润发生与支架排列无关,并且新形成的胶原基质遵循支架纤维方向。多层构造中的结构层次决定了生物力学性能,并且由于层状构造,只有层内具有非正交排列的C / C / C构造才具有积极的机械加固作用。这些多层结构可作为弯月面以及测试台的功能替代品,以了解使弯月面起作用的复杂机械原理。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号