首页> 外文期刊>Journal of Biomechanics >A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking
【24h】

A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking

机译:用于研究正常和内侧半月板切除术人膝关节行走过程中软骨细胞力学的多尺度有限元模型

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding pen-and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2 MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the pen-or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the pen-or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis. (C) 2015 Elsevier Ltd. All rights reserved.
机译:软骨细胞(关节软骨细胞)经历的机械信号调节细胞合成和软骨健康。多尺度建模可用于研究力如何从关节表面通过组织传递到软骨细胞。因此,估计某些身体活动(例如步行)过程中的软骨细胞行为可以提供有关细胞如何响应关节中正常和异常负荷的信息。在这项研究中,开发了一种3D多尺度模型,用于评估健康和内侧半月板切除术膝关节步态负荷过程中的软骨细胞以及周围的笔和细胞外基质反应。膝关节的几何形状基于MRI,而用于步态负荷的输入是从文献中获得的。股骨和胫骨软骨建模为原纤维增强的多孔粘弹性材料,而半月板被认为是横向各向同性的。与正常,健康的关节相比,半月板切除术关节中的软骨细胞和软骨组织中的流体压力增加到2 MPa(增加了30%)。在整个步态站立阶段都观察到了较高的体液压力。与笔或细胞外基质相比,内侧半月板切除术使软骨细胞中最大主要菌株的变化大得多(最多达60%)。由于内侧半月板切除术,软骨细胞的体积或形态没有实质性改变。目前的发现表明,在步行过程中,由于半月板内侧切除术,软骨细胞的变形没有实质性的改变,而异常的关节负荷使软骨细胞暴露于升高的体液压力和最大的主要应变(与笔状或细胞外基质中的应变相比)。这些可能有助于细胞活力和骨关节炎的发作。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号