首页> 外文期刊>Journal of biomechanical engineering. >Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
【24h】

Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications

机译:用于肌肉骨骼应用的通用机器人测试系统的设计和验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Orthopaedic research on in vitro forces applied to bones, tendons, and ligaments during joint loading has been difficult to perform because of limitations with existing robotic simulators in applying full-physiological loading to the joint under investigation in real time. The objectives of the current work are as follows: (1) describe the design of a musculoskeletal simulator developed to support in vitro testing of cadaveric joint systems, (2) provide component and system-level validation results, and (3) demonstrate the simulator's usefulness for specific applications of the foot-ankle complex and knee. The musculoskeletal simulator allows researchers to simulate a variety of loading conditions on cadaver joints via motorized actuators that simulate muscle forces while simultaneously contacting the joint with an external load applied by a specialized robot. Multiple foot and knee studies have been completed at the Cleveland Clinic to demonstrate the simulator's capabilities. Using a variety of general-use components, experiments can be designed to test other musculoskeletal joints as well (e.g., hip, shoulder, facet joints of the spine). The accuracy of the tendon actuators to generate a target force profile during simulated walking was found to be highly variable and dependent on stance position. Repeatability (the ability of the system to generate the same tendon forces when the same experimental conditions are repeated) results showed that repeat forces were within the measurement accuracy of the system. It was determined that synchronization system accuracy was 6.7 ± 2.0 ms and was based on timing measurements from the robot and tendon actuators. The positioning error of the robot ranged from 10 μm to 359 μm, depending on measurement condition (e.g., loaded or unloaded, quasistatic or dynamic motion, centralized movements or extremes of travel, maximum value, or root-mean-square, and x-, y-or z-axis motion). Algorithms and methods for controlling specimen interactions with the robot (with and without muscle forces) to duplicate physiological loading of the joints through iterative pseudo-fuzzy logic and real-time hybrid control are described. Results from the tests of the musculoskeletal simulator have demonstrated that the speed and accuracy of the components, the synchronization timing, the force and position control methods, and the system software can adequately replicate the biomechanics of human motion required to conduct meaningful cadaveric joint investigations.
机译:由于现有的机器人模拟器在实时向被研究的关节实时施加全生理负荷方面存在局限性,因此很难进行关节负荷过程中应用于骨骼,肌腱和韧带的体外力的骨科研究。当前工作的目标如下:(1)描述为支持尸体关节系统的体外测试而开发的肌肉骨骼模拟器的设计,(2)提供组件和系统级的验证结果,以及(3)演示模拟器的对脚踝复合体和膝盖的特定应用有用。肌肉骨骼模拟器使研究人员可以通过模拟肌肉力的电动执行器来模拟尸体关节上的各种载荷情况,同时使关节与专用机器人施加的外部载荷接触。克利夫兰诊所已完成多项脚和膝盖研究,以证明模拟器的功能。使用各种通用组件,还可以设计实验来测试其他肌肉骨骼关节(例如,脊柱的臀部,肩膀,小关节)。人们发现,在模拟行走过程中,肌腱致动器产生目标力分布的精度是高度可变的,并且取决于姿态位置。可重复性(当重复相同的实验条件时,系统产生相同的肌腱力的能力)结果表明,重复力在系统的测量精度范围内。确定的同步系统精度为6.7±2.0 ms,并且基于机器人和腱执行器的计时测量结果。机器人的定位误差在10μm至359μm的范围内,具体取决于测量条件(例如,加载或卸载,准静态或动态运动,集中移动或极限移动,最大值或均方根,以及x- ,y轴或z轴运动)。描述了通过迭代伪模糊逻辑和实时混合控制来控制样本与机器人的交互作用(有无肌肉力)以复制关节的生理负荷的算法和方法。肌肉骨骼模拟器的测试结果表明,组件的速度和准确性,同步时序,力和位置控制方法以及系统软件可以充分复制进行有意义的尸体关节研究所需的人体运动的生物力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号